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ABSTRACT 

 

Since its discovery in 1981, HIV-1 has infected ~78 million people and killed ~39 

million people.  Developing an HIV-1 vaccine remains one of the top priorities in the 

fight against this devastating pandemic.  The modest efficacy showed by the recent 

RV144 trial suggests that achieving this goal might be possible.  As the search for an 

effective vaccine continues, the induction of antibodies that can neutralize a large number 

of antigenically distinct viruses from different clades remains a major goal.  In recent 

years, a number of broadly neutralizing antibodies (bnAbs) that target the HIV-1 

envelope have been isolated from virus-infected patients, offering hope for vaccine 

development.  Of the different targets on the HIV-1 envelope, the membrane-proximal 

external region (MPER) of gp41 has been recognized as an attractive candidate for 

vaccine development.  Besides playing a critical role in virus fusion, this domain also 

contains highly conserved linear epitopes recognized by some of the broadest 

neutralizing antibodies like 4E10 and 10E8.  However, the lack of MPER structural 

details poses a significant challenge in designing MPER-based vaccines.  In our attempts 

to induce MPER targeting bnAbs, we have designed and evaluated immunogenic 

properties of multiple antigens in rabbits.  Our findings demonstrate that the 

immunogenicity of the MPER is strongly influenced by the presence or the absence of 

neighboring domains.  Although we have not yet succeeded in inducing 4E10-/10E8-like 

antibodies, we have made significant progress towards targeting 4E10/10E8 epitope. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Dissertation Organization 

This dissertation is divided into six chapters.  Chapter 1 presents the “General 

Introduction” describing the history of HIV-1 and the current pandemic, the course of 

HIV-1 infection, components of the HIV-1 genome and the importance of HIV-1 

envelope function for both virus infection and host immune response.  This is followed 

by an overview of the current status of HIV-1 vaccine development and detailed 

discussion of gp41-based vaccine development approaches. 

Chapter 2 is presented as a manuscript in preparation titled “Effect of 

polyethylene glycol-based silencing of gp41 envelope cluster II immunodominant epitope 

on MPER immunogenicity.”  This manuscript describes an attempt to prevent immune 

responses against a non-neutralizing, immunodominant epitope on a soluble gp41 

antigen.  The effect of this immuno-silencing on MPER immunogenicity is further 

evaluated.  The contribution of each author is as follows: Habtom Habte provided the 

gp41-54Q antigen; Saikat Banerjee performed the PEGylation, antigenic characterization 

of the PEGylated antigens, rabbit immunizations and characterization of antibody 

responses; Saikat Banerjee and Michael Cho wrote and revised the manuscript. 

Chapter 3 is presented as a manuscript in preparation titled “Immunological 

characterization of putative gp41 fusion intermediates of HIV-1.”  This manuscript 

evaluates MPER immunogenicity in the context of antigens designed to mimic the fusion 

intermediate form of gp41.  The contribution of each author is as follows: Saikat 
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Banerjee generated HR1-AA-54Q and HR1-EE-54Q antigens while Heliang Shi 

generated the HR1-Δ10-54K and HR1-Δ17-54K antigens; Saikat Banerjee and Heliang 

Shi immunized the rabbits, and performed assays for antibody titers and linear epitope 

mapping; in addition, Saikat Banerjee performed the antigenic and structural 

characterization of all antigens, and analyzed all anti-MPER antibody responses using 

PepScan assays; Saikat Banerjee and Michael Cho wrote and revised the manuscript. 

Chapter 4 is presented as a manuscript in preparation titled “Immunological 

characterization of a gp41-MPER antigen containing the native transmembrane domain 

of HIV-1.”  This manuscript attempts to characterize MPER immunogenicity in the 

context of a membrane bound antigen using a liposomal delivery system.  The 

contribution of each author is as follows: Yali Qin cloned the gp41-54TM antigen; Saikat 

Banerjee produced the protein antigen, developed and characterized the liposomal 

delivery system, conducted rabbit immunizations and characterization of antibody 

responses; Saikat Banerjee and Michael Cho wrote and revised the manuscript. 

Chapter 5 is presented as a manuscript in preparation titled “Characterization of 

MPER-targeting rabbit hybridomas generated using a novel prime-boost immunization”.  

This manuscript evaluates the ability of two prime-boosts approaches to elicit MPER 

targeting antibodies.  One rabbit is further used for hybridoma generation and three 

different hybridomas are characterized.  The contribution of each author is as follows: 

Heliang Shi provided the MPER28x3 antigen; Yali Qin cloned 54CT DNA; Saikat 

Banerjee, Yali Qin and Hojin Moon performed animal immunizations; Saikat Banerjee 

generated the gp41-54TM proteoliposomes, and characterized all antibody responses.  

Hojin Moon generated and maintained rabbit hybridomas; Saikat Banerjee screened and 
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characterized all rabbit hybridomas; Saikat Banerjee and Michael Cho wrote and revised 

the manuscript. 

Finally, Chapter 6 summarizes the overall conclusions of each chapter along with 

future directions.  The dissertation also contains an appendix section containing a 

recently published manuscript co-authored by Saikat Banerjee.  The work in this 

manuscript is relevant to the work described in the dissertation and hence has been 

provided for reference. 

 

Literature Review 

The HIV-1 Pandemic  

 In 1981, following the deaths of young homosexual men from rare opportunistic 

infections and malignancies, a new disease named Acquired Immune Deficiency 

Syndrome (AIDS) was identified1,2.  While this disease was originally dubbed as the “gay 

plague”, reports of heterosexual transmission of AIDS by the CDC in 1983 strongly 

challenged this misconception3.  In the same year, the cause of this disease was traced to 

a retrovirus that is now known as Human Immunodeficiency Virus Type 1 (HIV-1)4-7.  

Interestingly, a morphologically similar virus named HIV-2 was identified in patients in 

western Africa in 19868.  However, HIV-2 was found to be antigenically distinct from 

HIV-1 and more closely related to other viruses that were collectively known as simian 

immunodeficiency viruses (SIVs)9,10.  While SIVs were non-pathogenic in their natural 

hosts, simian versions of HIV-1 and HIV-2 were soon discovered in chimpanzees11 and 

sooty magabeys12, suggesting that cross-species lentiviral infection from different 

primates might have led to the emergence of AIDS-like disease in these animals.  Later 
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reports further suggested that HIV-1 and HIV-2 evolved as a result of zoonotic virus 

transfer from primates in Africa13.  

Based on distinct cross-species transmission events, HIV-1 has been divided into 

four lineages named M (major), O (outlier), N (non-M, non-O) and P (putative/pending 

the identification of further human cases).  Since its discovery in 1990, Group O has been 

found to represent less than 1% of the total HIV-1 infections and is restricted to 

Cameroon and its neighboring countries.  Group N (discovered in 1998) has been found 

only in Cameroon, and Group P was recently discovered in a Cameroonian woman in 

France in 2009.  In comparison, the first-known lineage, Group M, has infected millions 

of people across the globe and represents the pandemic form of HIV-1.  These groups are 

further divided into clades (or subtypes) based on their phylogenic relationship based 

originally on subgenomic regions of individual genes and later modified to include 

multiple subgenomic regions or full-genome sequences (reviewed in14).  This newer 

analysis has identified circulating recombinant forms (CRFs) found in more than one 

individual or unique recombinant forms (URFs) found in a single individual. These 

recombinant forms probably originated in individuals infected with multiple subtypes.  

For example, Group M is divided into at least 9 different clades (A, B, C, D, F, G, H, J 

and K) along with many CRFs and URFs. Traditionally, these subtypes and CRFs are 

associated with specific geographic regions (reviewed in 14-16), but recent cases of non-

native subtype transmission within a certain geographic region due to immigration have 

been reported17. 

As of 2013, there are about 35 million HIV-1 infected individuals according to the 

report from the Joint United Nations Program on HIV/AIDS 
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(http://www.unaids.org/sites/default/files/media_asset/UNAIDS_Global_Report_2013_e

n_1.pdf).  Most of these infections are acquired through mucosal surfaces in adults, but 

this virus can also be transmitted through percutaneous, and perinatal routes18,19.  While 

the administration of antiretroviral therapy drug therapy has been effective in controlling 

the infection in affected individuals (reviewed in20,21), it is believed that a successful 

HIV-1 vaccine is critical for preventing new infections.   

 

HIV-1 envelope 

While HIV-1 primarily infects both CD4+ macrophages and T cells, the overall 

depletion in T cell population leads to immunopathogenesis that renders the host 

susceptible to secondary infection (reviewed in22,23).  HIV-1 binds and infects these cells 

using the envelope glycoprotein.  Initially, each envelope glycoprotein is expressed as a 

gp160 precursor that is heavily glycosylated in the Golgi complex24 and is cleaved by a 

furin-like protease into two subunits, gp120 and gp4125,26.  These two subunits associate 

non-covalently to form trimeric, heteroduplex spikes on the virus surface (Fig. 1).   

The primary function of gp120 is to bind the host cell receptor (CD4) and co-receptors 

(viz. CCR5 and CXCR4), while the role of gp41 is to mediate fusion between viral and 

cellular membranes27-29 (Fig. 2).  Following docking of the viral spike to CD4, the gp120 

subunit undergoes local as well as quaternary structural rearrangement to position the 

V1/V2 and V3 loops for co-receptor binding30-33.  This “opening-up” of the gp120 

domain in-turn triggers conformational changes in the gp41 subunit.  The gp41 subunit 

stores the free energy needed for membrane fusion in a metastable, pre-fusion 

conformation.  Changes in gp120 transform gp41 into a fusion-active intermediate state 
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represented by the insertion of N-terminal fusion peptide domain into the host-cell 

membrane.  During the final steps of fusion process, interactions between two heptad 

repeat regions, HR1 and HR2, lead to the formation of a hairpin structure that pulls the 

virus and host cell membrane together and merges them while forming the highly stable 

six-helix bundle27,28. 

 

 

Figure 1:  Structure of the mature HIV-1 virion showing the different domains of the 

gp120 and gp41 subunits.  These two domains are generated by furin cleavage of the 

gp160 envelope protein.  The heavily glycosylated gp120 subunit contains a signal 

peptide (SP) followed by five constant (C1-C5), and five variable (V1-V5) regions.  The 

gp41 protein consists several domains in the order (N- to C-terminus)- fusion peptide 

(FP), polar region (PR), heptad repeat 1 (HR1), immunodominant loop (DL), heptad 

repeat 2 (HR2), membrane proximal external region (MPER), transmembrane (TM) and 

cytoplasmic tail (CT).   
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Figure 2:  Role of HIV-1 envelope in virus fusion. 

 

While the envelope glycoprotein plays the crucial role of mediating virus fusion 

to the host, it is equally important for the host humoral immune responses.  HIV-1 

specific antibodies can be detected as early as the first week after infection34.  This initial 

antibody response is non-neutralizing, first targeting the gp41 and followed by anti-gp120 

antibodies within a few weeks.  After several months, some autologous neutralizing 

antibodies are developed35-39.  Interestingly, these antibodies inadvertently drive virus 

evolution to generate escape mutants38-40.  Ultimately, this continuous co-evolution of 

virus and the host immune system results in the development of some cross-clade 

neutralizing antibodies in about 2-4 years41.  High levels of these cross-clade neutralizing 

antibodies have been detected in about 20% of the infected individuals36,42-45.  However, 

1% of the infected population (called “elite neutralizers”) can elicit neutralizing 

antibodies effective against hundreds of different viral strains belonging to different HIV-
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1 clades46, termed broadly neutralizing antibodies (bnAbs).  Typically, the neutralizing 

breadth and potency of sera from elite neutralizers is due to the synergistic and/or 

complementary activity of multiple neutralizing antibodies and/or a few different 

bnAbs47-52.  While these bnAbs might not suppress virus replication completely due to 

viral escape38,39, they might help by sustaining low viral loads in infected patients, 

especially since mutational escape may decrease virus fitness53.  However, passive 

transfer of bnAbs confers protection against HIV-1 infection54-58.  These findings have 

established a general consensus that a successful HIV-1 vaccine must have components 

for eliciting bnAbs59,60.  

The isolation of potent bnAbs from infected patients has improved greatly over 

the last five years.  This has been possible due to the use of flow cytometry based B cell 

capture using novel recombinant, soluble HIV-1 envelopes and development of single 

cell antibody cloning techniques61-64.  Epitope mapping of these highly potent bnAbs has 

redefined the sites of vulnerabilities on the envelope glycoprotein into five major 

categories (Fig. 2, from a recent review by 65).  These are the (1) CD4 binding site, 

glycan associated (2) V1/V2 loops and (3) V3 loop, (4) membrane proximal external 

region (MPER) and the newly identified (5) glycan associated bridging region between 

gp120 and gp41.  In addition, one bnAb, 2G1266, has been reported to target a glycan-

only epitope on gp12067.  Regardless of category, all bnAbs function either by blocking 

virus binding or by inhibiting the conformational changes required for virus fusion.  

Additionally, sequence and structural characterization of these bnAbs have highlighted 

some of the unique features that might contribute to their ability to neutralize multiple 

virus strains.  First, these antibodies contain a high percentage of somatic hypermutation 
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(as high as 40% amino acid substitutions), especially in the variable heavy chain region 

genes50,63,68-74, along with insertions or deletions in their complementarity determining 

regions (CDRs)70,75.  This suggests that their in vivo maturation might be a complex 

process.  Second, several antibodies have especially long heavy chain CDR3 (HCDR3) 

(between 20-34 amino acids).  These long HCDR3s are thought to interact with V1/V2 

and V3 loops by penetrating the glycan shield, bind the gp120/gp41 bridging region and 

aid in accessing the gp41 MPER domain76.  Finally, several of these antibodies show 

autoreactivity or polyreactivity48,70,72,73,77,78, suggesting that these might be induced as a 

result of dysfunctional B cell tolerance in patients with prolonged chronic HIV-1 

infection64,79,80. 

As discussed above, bnAbs are effective against large numbers of virus strains 

from multiple HIV-1 clades because they typically target epitopes that are more 

conserved and functionally important.  However, they are generated only after multiple 

years post-infection.  This is probably due to the fact that HIV-1 has evolved multiple 

ways to hinder the elicitation of effective neutralizing antibodies.  First, HIV-1 causes 

major changes in B cell development and function during infection due to pathological 

effects on lymphoid tissues that harbor the B cells, as well as the lack of T cell help in 

later stages.  These changes include hypergammaglobulinemia, enhanced polyclonal 

activation, increased plasmablast differentiation and memory B-cell exhaustion81.  

Second, a recent study suggests that interaction of viral proteins with B-cell surface 

molecules during the early stages of infection might delay the initial humoral response 

against HIV-1 by directly suppressing B cell activation and proliferation82.  The authors 

suggested that B cell interactions with gp120 envelope can induce immunosuppressive 
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cytokine TGF-β1 production, expression of inhibitory receptor FcRL4 and decreased 

expression of the CD80 costimulatory molecule involved in antigen presentation.  Third, 

the HIV-1 envelope provides multiple challenges for the recognition of the vulnerable 

conserved sites that are targeted by bnAbs.  HIV-1 uses high rates of genetic mutation83 

and recombination84 to generate impressive sequence diversity in its envelope 

glycoproteins.  This sequence diversity is further complicated by the presence of 

extensive and variable glycan shielding that can be readily shifted to prevent virus 

neutralization85,86.  Conformational masking of the receptor binding site30 and steric 

occlusion of the co-receptor binding site87 are some of the other mechanisms employed 

by the virus to evade host antibody response.  Gp41 based studies have also revealed that 

MPER epitopes targeted by bnAbs are only transiently exposed88-92.  HIV-1 also uses 

uniquely low envelope spikes density as means to prevent inter-spike bivalent binding by 

antibodies93,94.  Furthermore, spike structure inherently prevents intra-spike antibody 

binding.  These mechanisms ensure that antibodies elicited against HIV-1 envelope bind 

through monovalent interactions, have low potency and allow easy virus escape through 

mutation.  Interestingly, a recent study demonstrated that engineered antibody-based 

molecules capable of bivalent intra-spike crosslinking can show a 100-fold increase in 

neutralizing potency against multiple viruses95.  The envelope glycoprotein contains 

immunodominant decoy epitopes like the V3 loop on gp120 that give rise to non-

neutralizing or strain-specific neutralizing antibodies96,97.  Antibody response is also 

diverted due to the presence nonfunctional forms like monomeric spikes, gp41 stumps, 

and uncleaved gp160 that are also displayed on the virus surface98,99.      
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HIV-1 vaccine trials  

Out of the hundreds of vaccine trials conducted to date (reviewed in 100), only five 

have advanced to Phase IIb and Phase III clinical trials; these are the VAX003, VAX004, 

STEP/Phambili, RV144 and HVTN505 trials.   

The world’s first phase III trials, VAX003 and VAX004, were conducted between 

1999 and 2003, and tested bivalent recombinant, gp120 envelopes delivered with 

alum101,102.  While the VAX004 trial used envelopes derived from two different subtype 

B viruses, VAX003 used envelopes derived from subtypes B and E.  However, both trials 

failed at inducing neutralizing antibodies and did not reduce HIV-1 acquisition in the 

vaccinated groups.   

The STEP and the Phambili Phase IIb trials (conducted between 2005 and 2007) 

were conducted in America/Australia and South Africa respectively103,104.  Both trials 

tested an identical adenovirus serotype 5 based delivery and expression of HIV-1 group 

specific antigen (gag), polymerase (pol), and negative regulation factor (nef) genes.  

However, no protection was demonstrated, and these trials were stopped following the 

observation that certain groups of immunized individuals showed higher chances of 

infection compared to placebo groups105,106.   

The most recently concluded trial, HVTN505 (conducted between 2009 and 

2013), used a recombinant DNA vector prime and a recombinant adenovirus serotype 5 

boost.  The priming vector coded for HIV-1 clade B Gag, Pol and Nef proteins along with 

Env proteins (subtypes A, B and C)107.  The boosting adenovirus coded for Gag and Pol 

from subtype B and Env from subtypes A, B, and C.  This vaccination too failed to confer 

any significant protection or reduce viral loads in infected patients.   
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The only trial to display vaccine-based protection against HIV-1 is the RV144 

trial that was conducted in Thailand between 2003 and 2006108.  This trial combined two 

previously failed vaccines into a prime-boost immunization.  Priming antigen used was a 

recombinant HIV-1-canarypox vector that delivered env, gag and protease (ALVAC-HIV 

[vCP1521]) and was followed by alum-based boosting with bivalent recombinant gp120 

envelope proteins belonging to subtypes B and E (AIDSVAX B/E).  This study reported 

31% efficacy in preventing virus acquisition upon vaccination.  Further analysis has 

revealed that while the vaccine did not induce any neutralizing antibodies, IgG antibodies 

elicited against the V1/V2 loops of gp120 correlated with reduced risks, and protection 

might be mediated by antibody-dependent cell-mediated cytotoxicity (ADCC).  In 

contrast, generation of envelope specific IgA correlated with risk enhancement109-111. 

The small success against HIV-1 in the RV144 trial is a significant milestone that 

has provided much needed hope for the field of HIV-1 vaccine development.  Based on 

the findings of these trials, it is now agreed that a successful HIV-1 vaccine should 

induce both humoral and cell mediated immunity to (a) block or reduce virus infection by 

antibody mediated mechanisms, and (b) control infections caused by virus breakthrough 

using cytotoxic T lymphocyte mediated responses100,112,113.  Multiple efforts to design 

such vaccine components that meet these goals are being carried out (recently reviewed 

in 114). 

 

Gp41-based vaccine development 

Designing antigens that can induce bnAbs in animals is a major goal for HIV-1 

vaccine development.  The virus envelope glycoprotein is the only known target of 
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neutralizing antibodies.  As discussed earlier, bnAbs are directed against several critical 

epitopes on the envelope.  Three of these sites of vulnerabilities; the CD4 binding site, 

the V1/V2 loop glycan epitopes and the V3 loop glycan epitopes; are present on the 

gp120 subunit, while a fourth site consists of the gp120-gp41 interface.  Multiple studies 

have focused on designing gp120-based vaccines to induce similar bnAbs (reviewed in 

115-117).  However, such efforts have been met with several challenges including high 

sequence variability, extensive (up to 50%) and variable glycosylation, presence of decoy 

immunodominant epitopes and the highly conformational nature of the epitopes capable 

of eliciting broad and potent neutralizing antibodies39,85,86,96,97.   

In comparison, the gp41 subunit contains a short, ~22 amino acid long domain 

located between the heptad repeat 2 (HR2) and the transmembrane (TM) domains.  This 

highly conserved domain, named the membrane proximal external region (MPER), is the 

only bnAb-targeted epitope present on gp41 (reviewed in118).  Apart from being highly 

conserved and unglycosylated, the MPER is recognized by five bnAbs isolated to date119-

123.  Two of these, 2F5, and m66.6, bind the N-terminus part (gp41 residues 656 to 668; 

HXB2 numbering) of MPER while three others; 4E10, Z13e1, and 10E8; bind the C-

terminus half (gp41 residues 668 to 683; HXB2 numbering). The exact epitope, 

neutralizing breadth and neutralizing potency varies among these antibodies.  While both 

m66.6 and 2F5 binding involves 664DKW668 residues, 2F5 is more broad and potent of the 

two antibodies122,124.  The less potent and broad of the N-terminal bnAbs, Z13e1, binds 

the epitope 668SLWNWFDITN667 (critical residues underlined)125.  However, 4E10 

(binding epitope 672WFDITNWLW680) and the recently discovered 10E8 (binding epitope 

671NWFDITNWLWYIR/K683) show significant breadth by neutralizing about 98% of 
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the HIV-1 strains123.  Additionally, the potency of 10E8 is much higher than 4E10, 

thereby making it one of the broadest and most potent bnAb isolated to date123.  The 

epitopes targeted by these bnAbs are continuous as opposed to conformational epitopes 

on gp120. Furthermore, as revealed by the recent crystal structures of the native 

envelope, MPER might not be involved in interprotomer interactions and fold 

independently in the vicinity of a viral membrane126,127.  Hence, a significant amount of 

resources have been invested in MPER-based vaccine design. 

Several different approaches have been tried to induce anti-MPER bnAbs in 

animals.  Early studies testing the efficacy of MPER peptide-based vaccines failed to 

induce neutralizing antibodies, probably due to improper MPER structure in absence of 

other regions, as well as lacking T cell epitopes required to induce robust CD4+ T cell 

immunity.  Most of these approaches tested the immunogenicity of the 2F5 epitope 

containing peptide alone128,129 or coupled to carrier proteins130-132.  One study tested a 

slightly larger peptide containing the partial HR2 and complete MPER domains in 

conjugation with subunit B of cholera toxin133.  Some studies have used chimeric viruses 

to display MPER epitopes134-141, but most of these studies report low anti-MPER 

antibody titers, probably due to the presence of other immunogenic epitopes outside the 

MPER epitope.  MPER peptides have also been delivered on engineered scaffolds 

optimized to mimic antibody bound peptide conformations142-144.  However, these 

approaches have largely failed because antibody-bound conformations, which might 

result from induced fit, might not represent the native MPER structure bound by naïve B 

cells.  Different recombinant fusion proteins have also been tested to better expose MPER 

domain by grafting it onto the gp120 variable loops145,146 or by replacing the gp41 HR2 
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domain with HA2 to mimic a fusion-intermediate147.  Finally, to present MPER in a more 

native conformation, multiple studies have delivered MPER using virus-like particles and 

liposomes, but overall, these studies too have failed in eliciting anti-MPER bnAbs.   

A handful of studies have demonstrated weak to modest cross-clade neutralizing 

activity138,140,141,148-150.  Guinea pigs immunized with rhinoviruses displaying the 2F5 

epitope (ELDKWA) and boosting with the similar MPER epitope coupled to carrier 

peptides were reported to induce modest serum neutralizing activity140.  A second study 

also showed similar results in guinea pigs using chimeric rhinovirus displaying the 4E10 

epitope141.  Guinea pigs also elicited weak MPER-specific neutralizing antibodies using a 

mutated heamagglutinin-gp41 chimeric DNA vaccine or protein-containing virus like 

particles138.  Kreb et al generated a multimeric MPER antigen by fusing it to the self-

assembling E2 protein of Geobacillus stearothermophilus149.  Rabbits immunized with 

the MPER 60-mer antigens and boosted with gp160 DNA elicited antibodies that showed 

weak neutralization against the HIV-2/HIV-1 chimeric viruses.  One study reported the 

immunization of llamas with gp41-based proteoliposomes148.  While no serum 

neutralization was detected, following hybridoma generation, a variable domain of a 

single heavy chain (VHH), named 2H10, was isolated and its binding was mapped to 

657EQELLELDK665 (critical residues underlined).  This “nanobody” further demonstrated 

modest cross-clade neutralization in its bivalent form.  Finally, Lai et al described the 

immunization of guinea pigs with a gp41- fusion intermediate with liposomal delivery 

that has demonstrated the best, albeit still modest, serum based cross-clade neutralization 

reported to date150.  Regardless, none of these studies induced neutralizing antibodies that 

can match the breadth and potency of bnAbs isolated from patients.   
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Two different hypotheses have been proposed to explain these failures.  The first 

hypothesis is based on cross-reactivity and knock-in mice experiments performed using 

2F5 and 4E1077,78,151,152.  These studies showed that anti-MPER bnAbs are self-reactive, 

and hence such B cells are eliminated during development in a healthy individual.  The 

development of these antibodies is probably possible due immune dysfunction and loss of 

tolerance mechanisms in a small population of HIV-1 infected patients.  However, the 

recently discovered and more potent 10E8 bnAb does not demonstrate similar cross-

reactivity to lipids or self antigens123.  Hence, lipid cross-reactivity or recognition of self-

antigens per se is not a necessary property of MPER targeting bnAbs.  Instead, the 

limited understanding of viral and host factors involved in the generation of these bnAbs 

has been suggested as a more likely reason for failure of past attempts153.   

While the MPER domain is only accessible post receptor binding88-92, it is likely 

that MPER exhibits multiple structures due to the conformational plasticity of gp41.  

This, along with high hydrophobicity, has complicated efforts to elucidate native MPER 

structure(s) that can engage naive B cells and mediate bnAb development.  In the absence 

of this crucial information, MPER-based vaccine development must rely on logical, yet 

somewhat empirical design and testing of different vaccine antigen and adjuvant 

formulations as undertaken in this dissertation. 
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Abstract 

The membrane proximal external region (MPER) is highly conserved and capable of 

eliciting broadly neutralizing antibodies (bnAbs) including 4E10, in patients.  However, 

attempts to elicit similar bnAbs using different MPER based immunogens have been 

unsuccessful.  We had previously designed and characterized a gp41 antigen consisting 

of the heptad repeat region 2 (HR2) and MPER.  This antigen, named gp41-54Q, elicited 

strong antibody titers in rabbits, but the sera failed to neutralize pseudovirus.  Linear 

epitope mapping revealed strong responses against the non-neutralizing cluster II 

immunodominant epitope.  Attempts to characterize this response at the monoclonal level 

resulted in identification of the non-neutralizing 2C2 antibody, which binds the C 

terminus half of this epitope.  In this study, we attempted to mask this immunodominant 

epitope using amine reactive polyethylene glycol (PEG).  PEGylation of the lysine 

residues in this region decreased 2C2 binding severely but retained 4E10 binding, 

suggesting that the MPER was accessible.  Immunogenic characterization of the 

PEGylated gp41-54Q in rabbits revealed lower overall antibody titers.  Linear epitope 

mapping showed strongly decreased antibody responses toward the cluster II region.  

However, the primary antibody response was diverted towards the HR2 domain, and the 

MPER bound little antibody.  Our results suggest that silencing the cluster II region alone 
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is not sufficient to enhance MPER immunogenicity and highlights how neighboring 

domains might influence the immune response toward the MPER. 

 

Introduction 

The isolation and characterization of multiple bnAbs from infected patients in the 

last fifteen years has enhanced our understanding of the host response to HIV-1(van Gils 

and Sanders, 2013).  While these findings have highlighted the vulnerable epitopes on the 

virus envelope, translating this knowledge into designing effective vaccines capable of 

generating similar bnAbs has been difficult.  Of the different epitopes that elicit bnAbs, 

the MPER domain of the gp41 subunit remains an attractive candidate for two major 

reasons.  First, this short region is a hotspot for multiple bnAbs including 10E8, which 

remains one of the broadest and most potent neutralizing antibody isolated (Huang et al., 

2012; Purtscher et al., 1994; Stiegler et al., 2001; Zwick et al., 2001).  Second, the 

neutralizing epitopes on MPER are contiguous as opposed to complex structural epitopes 

present on the gp120 subunit.  However, MPER immunogen design has been difficult due 

to its hydrophobic nature and the inability to characterize MPER structure in context of 

the native virion (Montero et al., 2008).  Furthermore, the gp41 subunit undergoes 

significant conformational changes during the fusion process, thereby making it a 

challenging target (Mao et al., 2013; Melikyan, 2008).  Hence, there is a need for 

systematic, immunogenic characterization of MPER in the context of different gp41 

conformations.   

Towards this goal, we have previously characterized a gp41 ectodomain antigen 

(unpublished data).  This antigen, named gp41-54Q, contained 54 amino acids spanning 
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both HR2 and MPER domains.   Following immunization, rabbits elicited strong 

antibody responses that were predominantly directed against the cluster II region, located 

in the HR2 domain, along with low levels of MPER-targeting antibodies (Supplementary 

Fig. 1).  The cluster II epitope has been shown to elicit non-neutralizing antibodies 

mostly (Frey et al., 2010; Hioe et al., 1997).  One of the immunized rabbits was used for 

hybridoma generation, resulting in the identification of a non-neutralizing antibody (2C2) 

that coincidentally targeted the cluster II region.  Interestingly, 2C2 was able to prevent 

2F5 binding to the MPER in competition assays (data not shown).  Other have also 

reported similar 2F5 competing, cluster II antibodies in patients (Alam et al., 2008). 

Based on these findings, it was hypothesized that the induction of non-

neutralizing antibodies against the cluster II region might interfere with the generation of 

MPER-targeting bnAbs in immunized rabbits.  Upon “silencing” of this dominant 

epitope, antibody response might be redirected to other subdominant epitopes (including 

the MPER) on gp41-54Q.  In this study, the cluster II immunodominant epitope on gp41-

54Q was modified by PEGylation of the two lysine residues: K655 and K665.  The 

effectiveness of this epitope masking was evaluated by monoclonal antibody binding and 

rabbit immunization experiments. 

 

Results 

Generation and characterization of PEGylated gp41-54Q antigens 

To mask the non-neutralizing immunodominant epitope on gp41-54Q using a 

mild method, N- Hydroxylsuccinimide (NHS) esters of PEG molecules were selected as 

they specifically bind primary amines on the protein.  Two of these reactive sites were 
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present on the lysine residues (K655 and K665) that flank the C-terminus end of the 

immunodominant cluster II region, as indicated in Fig. 1A.  Apart from these, the N-

terminus end of the trypsinized gp41-54Q was also PEGylated.  Since the efficiency of 

masking might depend on the size of the PEG molecule, two PEG polymers of different 

chain lengths, PEG4 and PEG8, were tested.  Following labeling, quantification of 

unmodified primary amines using 2,4,6-trinitrobenzene sulfonic acid (TNBSA) revealed 

that 75-85% of the primary amines were PEGylated (data not shown). 

The effect of the modification on epitope accessibility was tested using ELISA 

binding to different antibodies.  We had previously isolated a non-neutralizing antibody, 

named 2C2, from a gp41-54Q immunized rabbit (unpublished data).  The binding 

specificity for 2C2 was mapped to the immunodominant region, (655KNEQELLALDK665) 

with the underlined residues being critical as per binding analyses with alanine scanning 

mutant peptides.  As shown in Fig. 1B, there was a significant loss in recognition of both 

PEG4-54Q (~250 fold) and PEG8-54Q (~1000 fold) in comparison to the unmodified 

protein, suggesting that K655 was successfully modified to block access to 2C2.  This 

remarkable decrease in binding might also be due to modification of the K665 residue.  

While K665 is not critical for 2C2 binding, PEGylation of this residue might cause steric 

interference with antibody binding.  Binding was also reduced (~20 fold) to the MPER 

binding neutralizing antibody 2F5 that recognizes the core epitopes 662A/ELDKWA667, 

suggesting that K665 residue was also successfully PEGylated.  However, the lack of 

completely inhibition of 2F5 binding suggests that this residue might not be uniformly 

PEGylated in agreement with the total percentage of primary amine modification 

mentioned earlier.  This modification also mildly affected Z13e1 binding to its epitope 
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666WASLWNWFDITN677, probably because of the steric hindrance caused by the 

flexible PEG molecule bound to adjacent K665 residue.  Importantly, binding to 4E10 

(core binding epitope 672WFDITNWLW680) remained unaffected, suggesting that 

PEGylation did not block access to the C-terminus end of MPER.  Overall, the ELISA 

binding data to different antibodies revealed that accessibility of the cluster II region can 

be blocked without affecting the antibody binding to the C terminus end of gp41-54Q. 

 

Immunogenic characterization of PEGylated gp41-54Q antigens  

The immunogenicity of PEG4-54Q and PEG8-54Q was tested in rabbits using the 

zinc-chitosan adjuvant.  Three rabbits were immunized three times for each of these 

modified antigens.  Rabbits were bled prior to and two weeks after each immunization.  

The isolated sera were used for determining antibody titers using ELISA against the 

corresponding antigen.  In case of PEG4-54Q immunized animals (Fig. 2; top panels), 

serum antibody titers reached between 102 to 103 post first immunization.  Titers 

increased significantly upon second immunization, ranging from 104 to 105.  Following 

the third immunization, there was only a slight increase in titer for rabbit R1, but an 

almost 10-fold increase was observed for rabbits R2 and R3.  For animals immunized 

with PEG8-54Q (Fig. 2; bottom panels), serum antibody titers after each immunization 

were found to be lower than that seen PEG4-54Q rabbits, suggesting that the larger PEG 

molecule was more efficient in immunosilencing.  Regardless, following three 

immunizations the titers ranged between 104 and 105 in all animals, which is at least 10-

100 fold less than antibody titers for rabbits immunized with the unmodified protein 

(unpublished data). 
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To determine the epitopes against which the antibody response was directed, 

peptide ELISAs were performed after the third immunization using a mixture of N-and 

C-terminus biotinylated overlapping 10-mer peptides (Fig. 3) as previously described 

(Habte et al., 2015).  The linear peptides recognized by rabbits immunized with 

PEGylated antigens were strikingly different from those for animals immunized with 

unmodified gp41-54Q (Fig. S1).  For rabbits immunized with PEG4-54Q (Fig. 3, top 

panel), the response towards the cluster II region was much lower, suggesting that 

PEGylation of this region was successful in blocking response to this otherwise 

immunodominant epitope.  However, two of the three rabbits (R2 and R3) showed no 

response towards the C-terminus end of MPER.  Surprisingly, strong response was seen 

against peptides 629MEWEREISNY638, 632EREISNYTDI641, 635ISNYTDIIYR644 and 

638YTDIIYRLIE647 located at the N-terminus end of the HR1 domain.  For R1, the 

epitope recognition was different and included weak response towards peptides 

668SLWNWFDITN677, 671NWFDITNWLW680 and 674DITNWLWYIK683 in the MPER C-

terminus end.   

Rabbits immunized PEG8-54Q recognized fewer linear epitopes (bottom panel).  

While R1 did not bind any linear peptides, R2 recognized only peptide 

638YTDIIYRLIE647.  R3 recognized few N-terminus end peptides in the HR1 domain but 

also bound peptides 647EESQNQQEKN656 in the cluster II region and 

659ELLALDKWAS668 overlapping between cluster II and MPER.  The response elicited 

against these two peptides was unexpected since they both contained lysine residues that 

were PEGylated.   
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To further understand serum binding to these peptides, ELISA was performed 

against N-terminus and C-terminus biotinylated peptides separately.  As shown in Fig. 4, 

for both peptide 647 and 659, serum from PEG8-54Q R3 bound C-terminus end 

biotinylated peptides well but failed to recognize N-terminus end biotinylated peptides.  

One possible explanation for this difference in binding to the peptides with the same 

sequence but different orientation is the accessibility of the binding residues after coating 

on the plate.  In the model described in Fig. 4, regions closer to the plate are somewhat 

inaccessible due to their proximity to the coating surface where as regions away from the 

plate can be readily bound by antibodies.  Since antibodies recognized the peptides that 

were attached to the plate via their C-terminus, it is likely that epitopes bound were 

located at the N-terminus ends of these peptides.  Consistent with this theory, these 

epitopes were away from the lysine residue that was PEGylated in the protein, thereby 

explaining the possibility of antibody response to these regions.  It is important to note 

that such binding was observed only in one of the three rabbits immunized with PEG8-

54Q, suggesting that it might not be a common phenomenon.  In comparison to PEG4, 

PEG8 has a longer and more flexible chain, which might have allowed antibody access to 

the nearby regions in the cluster II region as shown in case of R3.   

Finally, in agreement with the lack of strong response towards the MPER domain, 

sera from all immunized rabbits failed to display any neutralizing activity (data not 

shown). 
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Discussion 

To elicit anti-MPER bnAbs through immunization, MPER containing antigens 

need to meet at least two criteria.  First, the antigen should generate a strong antibody 

response against the MPER domain.  Second, the antibodies elicited should bind the 

MPER domain on the surface of the native virion.  However, achieving both of these 

criteria has been difficult.  One possible hypothesis for this failure is that inducing non-

neutralizing antibodies could directly interfere with neutralizing antibody elicitation to 

neighboring domains (Alam et al., 2008; Cleveland et al., 2000).  Hence, reducing the 

immunogenicity of non-neutralizing epitopes might be a possible solution (Garrity et al., 

1997).   

In this study, the immunogenicity of the cluster II non-neutralizing epitope was 

silenced using a simple but effective method of blocking via PEGylation.  As revealed by 

ELISA, this modification also reduced 2F5 binding, and thus is not recommended for the 

generation of 2F5-like antibodies.  This masking did not affect the downstream 4E10 

binding and is equally unlikely to restrict access to the 10E8 epitope.  Hence, PEGylation 

of primary amines can be performed for antigens designed to elicit 4E10 or 10E8-like 

antibodies, albeit after replacing the K683 residue with the alternate R683 (Huang et al., 

2012).   

Both PEG4 and PEG8 were successful in preventing immune responses against 

the cluster II region.  The extent of immunosilencing was greater for PEG8, probably due 

to its longer chain length.  Strangely, the longer chain length also allowed the elicitation 

of antibodies in the vicinity of the modified residues in one rabbit.  Since PEG8 did not 

provide any additional benefits in terms of site specific silencing in vivo, it is fair to 
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conclude that use of shorter PEG4 might be sufficient in blocking immunodominant 

epitopes.  Unfortunately, effective masking of the cluster II region did not result in 

enhancement of antibody response towards neutralizing epitopes in the MPER.  Instead, 

antibodies were now elicited against the N-terminus end of the HR2 domain with little to 

no response against MPER.  These findings suggest that the N-terminus end of the HR2 

domain might be more immunogenic than the MPER upon masking of the cluster II 

region.  Our study serves as a cautionary note that silencing the cluster II region might 

not be sufficient to enhance MPER immunogenicity for some gp41-based antigens.  

However, we cannot conclude whether this is true in case of all other antigens since 

MPER immunogenicity depends heavily on the context in which it is presented (Habte et 

al., 2015).  It is possible that other gp41 antigens containing an immunodominant cluster 

II region might benefit from this approach.  Therefore, we recommend that PEGylation 

should be considered as an effective means of silencing immunodominant epitopes.  

Furthermore, PEG based epitope masking might be pursued for other proteins in general. 

 

Materials and Methods 

PEGylation of gp41-54Q 

The gp41-54Q gene segment, which encodes the C-terminal 54 amino acids of the 

gp41 ectodomain from an M group gp160 consensus sequence (MCON6), was PCR-

amplified from pcDNA-MCON6gp160 (kindly provided by Dr. Beatrice Hahn, 

University of Alabama; (Gao et al., 2005)).  PCR reaction was carried out using a sense 

primer (5’-CGCGGATCCGAGTGGGAGCGCGAGATC-3’; underline denotesBamHI 

site) and an antisense primer (5’-
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GATGAATTCTTAATGGTGATGATGGTGATGCTGGATGTACCACA-GCCA-3’; 

underline denotes EcoRI site).  A point mutation was introduced (indicated in bold) to 

mutate K683 into Q683 to eliminate a trypsin cleavage site.  The PCR-amplified DNA 

fragment was digested with BamHI and EcoRI and ligated into corresponding sites in 

pGEX-2T (GE Healthcare Life Sciences) or pET-21(a) (Novagen), to generate pET-

gp41-54Q, respectively.  Final constructs were sequenced confirmed.  

The gp41-54Q protein was expressed and purified as previously described (Shi et 

al., 2010) and cleaved using trypsin to remove the T7 expression tag.  The cleaved, 

purified protein was modified using Methyl-PEG-NHS esters- MS(PEG)4 (Thermo 

Scientific; Cat# 22341) and MS(PEG)8 (Thermo Scientific; Cat# 22509) as per the 

manufacturer’s instructions.  Both modified and unmodified proteins were treated with 

2,4,6-trinitrobenzene sulfonic acid (TNBSA) solution (Thermo Scientific; Cat# 28997) to 

determine the amount of free primary amines and the extent of successful PEGylation 

using the manufacturer’s protocol.   

 

Rabbit immunization  

Six New Zealand white female rabbits (2.5 to 3 kg) were purchased from Charles 

River (USA) and housed under specific pathogen free environments in compliance with 

the animal care guidelines at Iowa State University.  To evaluate the immunogenic 

properties of the PEGylated antigens, three rabbits each were immunized subcutaneously 

with PEG4-54Q and PEG8-54Q on weeks 0, 4 and 9 with the adjuvant zinc chitosan, 

which was prepared and used as previously reported (Habte et al., 2015; Qin et al., 2014).  

200 µg of the antigen was loaded onto 200 mg of Zn-chitosan in phosphate-buffered 
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saline (PBS, pH 8.0) by continuous agitation for three hours at room temperature.  For 

every immunization, each rabbit was immunized with 200 µg of PEGylated antigens. 

 

Enzyme-linked immunosorbent assay (ELISA) 

All antigens were coated onto 96-well Nunc-Immuno Plates (Nunc; # 439454) at 

30 ng/well using antigen coating buffer (15 mM Na2CO3, 35 mM NaHCO3, 3 mM NaN3, 

pH 9.6) overnight at 4 oC.  The plates were blocked for 1 hr at 37 oC using 200 μl/well of 

PBS (pH 7.5) containing 2.5% skim milk and 5% Calf Serum (CS).  The plates were 

washed 5× with 0.1% Tween 20 in PBS.   

For ELISA with cluster II- and MPER-binding antibodies, all antibodies 

(2F5(Buchacher et al., 1994; Purtscher et al., 1994; 1996), 2C2, 4E10(Stiegler et al., 

2001) and Z13e1(Nelson et al., 2007; Zwick et al., 2001)) were diluted in blocking buffer 

at a concentration of 1 μg/ml and further serially diluted three folds.  100 μl of the diluted 

antibodies were added to each well and incubated for 2 hr at 37 oC. The plates were 

washed 10×, and 100 μl of horseradish peroxidase (HRP)-conjugated secondary antibody 

(goat anti-human, 1:3000 dilution; Thermo Scientific; Cat# 31410) was added to each 

well and incubated for 1 hr at 37 oC.  Wells were washed 10× and developed by adding 

100 µl TMB HRP-substrate (Bio-Rad) for 10 min.  After stopping reactions using 50 µl 

of 2 N H2SO4, plates were read at 450 nm on a microplate reader (Versamax by 

Molecular Devices).  All experiments were performed in duplicates.  

For antibody end point titers, rabbit sera were initially diluted 1:10 in blocking 

buffer, and further subjected to three fold serial dilutions.  100 μl of the diluted sera were 

added to each well and incubated for 2 hr at 37 oC.  The plates were washed 10×, and 100 
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μl of horseradish peroxidase (HRP)-conjugated secondary antibody (goat anti-rabbit, 

1:3000 dilution; Thermo Scientific; Cat# 31430) was added to each well and incubated 

for 1 hr at 37 oC.   The rest of the steps were same as described above. 

For peptide ELISA with overlapping 10-mer peptides, individual peptides were 

biotinylated and coated as previously described (Habte et al 2015).  

  

Neutralization assays 

TZM-bl cell-based HIV-1 pseudovirus neutralization assays were performed as 

previously described (Li et al., 2005; Qin et al., 2014; Wei et al., 2002).  Viruses tested 

were SF162 (tier 1A, clade B), MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade 

B).  Murine leukemia virus Env-pseudotyped virus was used as a negative control.  
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Figures 

 
 

Fig 1: Design and characterization of PEGylated gp41-54Q. (A) PEGylated gp41-

54Q. The sequence of gp41-54Q is shown along with binding sites for the non-

neutralizing antibody 2C2 and bnAbs 2F5, 4E10 and Z13e1. Even though gp41-54Q does 

not contain the K683 residue essential for 10E8 binding, its epitope is shown. The two 

potential sites for PEGylation within the cluster II immunodominant region are also 

shown. (B) ELISA with 2C2, 2F5, Z13e1 and 4E10 reveal that while the cluster II region 
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is masked in both PEG4-54Q and PEG8-54Q, the C terminus end of the MPER is readily 

accessible. 

 

 

 

Fig 2: Immunogenicity of PEGylated gp41-54Q. ELISA was performed with sera 

collected post first, second and third immunization to determine endpoint titers for rabbits 

immunized with either PEG4-54Q or PEG8-54Q.  
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Fig 3: Mapping of linear immunogenic epitopes. Sera post third immunization was 

tested for ELISA binding to biotinylated overlapping peptides spanning the HR2 and 

MPER domains.  Pre-immune serum was used as negative control. The sequence of the 

gp41-54Q is aligned with the peptide numbering and individual peptides are marked 

using horizontal brackets.  The cluster II region and core binding epitopes for 2C2, 2F5, 

4E10 and 10E8 are indicated.  
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Fig 4: Binding analysis of PEG8-54Q R3.  Serum from R3 was tested separately against 

N- and C-terminus biotinylated peptides (A) 647 and (B) 659. Binding to the mixture of 

both sets of peptides was used as a positive control.  Serum showed strong binding only 

to the C-terminus biotinylated peptides. This difference in binding to N- and C-terminus 

biotinylated peptides can be explained by the adjoining model where regions close to the 

plate are less accessible to antibody binding.  Hence, binding to C-terminus biotinylated 

peptides means that the binding epitope lies at the N-terminus end of the peptide which 

also happens to be away from the lysine residues (and are modified on the PEGylated 

antigens).  
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Supplementary Fig 1: Linear epitope mapping of antibody response against gp41-

54Q.  Sera from nine rabbits from three different experiments were used for epitope 

mapping using overlapping 10-mer peptides spanning the entire gp41-54Q.  A mixture of 

N-terminus and C-terminus biotinylated peptides were used for the assay.  Horizontal 

brackets represent the sequence of each peptide.  The first peptide (MEWEREISNY) and 

the last peptide (DITNWLWYIK) are marked with an asterisk to indicate slight sequence 

differences from original antigen.  A450 values for individual rabbits are represented 

with purple spheres where as average values are indicated with red triangles.  The most 

immunodominant epitope overlaps with the cluster II region.  The binding epitope 

(KNEQELLALDK) for the non-neutralizing antibody 2C2 (isolated from one gp41-54Q 

immunized rabbit) is indicated along with core binding epitopes for anti-MPER bnAbs 

2F5 (ALDKWAS), 4E10 (WFDITNWLW) and 10E8 (NWFDITNWLWYIK). 
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Abstract 

The gp41 envelope subunit plays an important role in HIV-1 fusion to host cells.  

The membrane-proximal external region (MPER) domain of this protein is a target for 

several broad neutralizing antibodies (bnAbs) including 4E10 and 10E8.  Elicitation of 

similar antibodies through immunization has been difficult, partly due to the complex 

structural properties of gp41.  In our attempt to better understand the immunogenicity of 

MPER in different structural contexts, we had previously reported its characterization 

using an antigen containing a stable six-helix bundle comprising of HR1 and HR2 

domains.  In this study, we introduced multiple mutations or deletions to destabilize the 

six-helix bundle, thereby generating antigens that mimic the soluble fusion intermediate 

state. All antigens induced strong humoral response in rabbits.  Elicited antibodies 

showed strong binding to MPER peptide containing the 4E10 and 10E8 epitopes.  Peptide 

scanning in this region using alanine mutants revealed that immunized rabbits targeted 

several of the critical residues involved in 4E10 binding.  Most importantly, the HR1-

Δ10-54K construct was successful in eliciting antibodies that target the W672 residue 

critical for 4E10 binding.  Our results demonstrate that changes outside the MPER 

domain can influence the presentation of neutralizing epitopes and significantly alter the 

binding face targeted by vaccine-induced antibodies. 
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Introduction 

It is widely hypothesized that a successful vaccine should induce neutralizing 

antibodies against multiple clades of HIV-1 (Excler et al., 2015; Walker and Burton, 

2008).  Such broadly neutralizing antibodies (bnAbs) are elicited in a small population of 

HIV-1 infected patients, suggesting that the generation of these antibodies is a complex 

process.  However, isolation of these antibodies has helped the field of vaccine 

development immensely by understanding both the epitopes targeted and also the unique 

features that contribute to their broad neutralizing ability.  Most of the bnAbs identified 

to date target multiple conformational epitopes on the gp120 subunit of the virus 

envelope protein and act by blocking CD4 receptor or CCR5/CXCR4 co-receptor binding 

(van Gils and Sanders, 2013).  Unfortunately for vaccine development, attempts to elicit 

similar antibodies have largely failed due to the high sequence variability, extensive 

glycosylation of gp120 and the presence of decoy immunodominant epitopes that give 

rise to largely strain specific neutralizing antibodies (Pantophlet and Burton, 2006; 

Sodroski et al., 1998; Wei et al., 2003).   

In contrast to gp120 bnAbs, several bnAbs target linear epitopes on the gp41 

subunit and block essential conformational changes that are required for virus fusion to 

the host cell.  Further, these linear epitopes reside in a highly conserved, ~22 amino acid 

long domain called the membrane proximal external region (MPER) (Montero et al., 

2008).  The discovery of the highly potent and broad neutralizing antibody 10E8 (Huang 

et al., 2012), along with previously characterized bnAbs 2F5, 4E10 and Z13e1 (Purtscher 

et al., 1994; Stiegler et al., 2001; Zwick et al., 2001), has renewed interests in designing 

MPER-based vaccines.   
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So far, eliciting anti-MPER bnAbs through vaccination has been largely elusive.  

Direct immunization with MPER peptides alone or coupled to carrier proteins (Decroix et 

al., 2001; Joyce, 2002; Liao et al., 2000; Matoba et al., 2006; McGaughey et al., 2003; Ni 

et al., 2004), scaffold-based MPER epitope presentation (Correia et al., 2010; Guenaga et 

al., 2011; Ofek et al., 2010), MPER liposomal delivery (Dennison et al., 2011; Hanson et 

al., 2015; Hulsik et al., 2013; Lai et al., 2014; Matyas et al., 2009; Mohan et al., 2014; 

Serrano et al., 2014; Venditto et al., 2013; 2014), MPER containing hybrid/fusion 

proteins (Coëffier et al., 2000; Hinz et al., 2009; Krebs et al., 2014; Law et al., 2007; 

Liang et al., 1999; Mantis et al., 2001; Strasz et al., 2014) and chimeric viruses or virus 

like particles (Arnold et al., 2009; Benen et al., 2014; Bomsel et al., 2011; Eckhart et al., 

1996; Jain et al., 2010; Kamdem Toukam et al., 2012; E. Kim et al., 2014; Luo et al., 

2006; Marusic et al., 2001; Muster et al., 1995; Ye et al., 2011; Yi et al., 2013; Zhang et 

al., 2004) are some of the different approaches attempted for MPER-based HIV-1 

vaccines but only a handful have demonstrated modest cross-clade neutralizing activity 

(Hulsik et al., 2013; Krebs et al., 2014; Lai et al., 2014; Ye et al., 2011; Yi et al., 2013).   

The gp41 protein undergoes large conformational changes during virus fusion, 

and it is likely that the MPER domain also assumes several structural conformations.  To 

better understand MPER conformation, multiple crystal structures of short MPER 

peptides in complex with bnAbs have been generated (Cardoso et al., 2007; Julien et al., 

2008; Ofek et al., 2004).  Since attempts to induce bnAbs using constructs based on these 

structures have failed so far (Correia et al., 2010; Guenaga et al., 2011; Ofek et al., 2010), 

it is possible that these antibody bound structures do not represent the native MPER 

conformation that engages naïve B cells and triggers the development of known bnAbs.  
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Thus, further studies that characterize the structural and immunological properties of 

MPER in context of larger gp41-based proteins are required.  

In a previous study, we generated a soluble gp41 construct named gp41-HR1-54Q 

consisting of HR1, HR2 and MPER domains (Shi et al., 2010).  While the HR1 and HR2 

domains of this protein formed a post-fusion six-helix bundle, the MPER domain 

remained solvent accessible and highly flexible (Shi et al., 2010).  Immunological 

characterization revealed strong immune response against the C terminus end of the 

MPER domain, overlapping 4E10 and 10E8 epitopes(Habte et al., 2015).  Despite 

competition against these bnAbs, sera from immunized rabbits failed to neutralize 

pseudoviruses.  Further analysis revealed that sera antibodies bound the face of the alpha 

helix opposite to the face bound by 4E10 and 10E8.  It is possible that the failure to elicit 

antibodies against this binding face was due to presentation of the highly flexible MPER 

in the context of “near post-fusion” conformation.  Studies on gp41 conformational 

changes during fusion suggest that MPER presentation might be more optimal in the 

fusion intermediate state (Chakrabarti et al., 2011; de Rosny et al., 2004; Dimitrov et al., 

2007; Finnegan et al., 2002; Frey et al., 2008; M. Kim et al., 2011).  However, reports 

evaluating the immunogenicity of gp41 fusion intermediate have typically characterized 

antigens consisting of trimerized HR1 domains that lack the MPER (Bianchi et al., 2010; 

Qi et al., 2010).  Only one other study has attempted to generate an MPER-containing 

fusion intermediate by replacing the HR1 domain with HA2 region of influenza (Hinz et 

al., 2009).  While this study failed to elicit neutralizing antibodies, it is unclear whether 

these results were due to the presence of non-HIV-1 fragments (like the HA2 or the 

artificial trimerization domain) or due to use of Fruend’s adjuvant that might interfere 
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with the presentation of the highly hydrophobic MPER domain.  Thus, detailed 

characterization of MPER immunogenicity should be performed in the context of the 

gp41 fusion intermediate using different antigens and adjuvants to answer valuable 

questions pertaining to vaccine design. 

To generate putative fusion intermediate variants of gp41-HR1-54Q, we primarily 

disrupted the intramolecular interactions between HR1 and HR2 domains by introducing 

mutations or deletions in the HR1 domain.  The generated putative fusion intermediates 

(pFIs) possessed different structural and antigenic properties from gp41-HR1-54Q.  All 

pFIs induced strong antibody responses during rabbit immunizations with the adjuvant 

zinc-chitosan.  Linear epitope mapping further revealed that the pFIs generated distinct 

patterns of peptide recognition across HR2 and MPER domains.  Detailed mapping of the 

antibody response against the 4E10 epitope revealed that antibodies elicited by the pFIs 

targeted the peptide face opposite to that bound by gp41-HR1-54Q induced antibodies.  

Furthermore, antibodies induced by one of the constructs, HR1-Δ10-54K, targeted 

several residues critical for 4E10 binding, including W672.  These results suggest that 

structural changes outside the MPER can significantly alter its presentation permitting 

elicitation of antibodies towards the neutralizing face. 

 

Results 

Design of gp41-HR1-54Q variants 

The trimeric structure of gp41-HR1-54Q is stabilized by both inter- and 

intramolecular interactions (Shi et al., 2010).  During protein folding, intramolecular 

interactions form the post-fusion hairpin between HR1 and HR2 domains of individual 
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protein molecules.  Intermolecular interactions between individual HR1 molecules cause 

the formation of the final six-helix bundle by trimer assembly in solution, post protein 

folding.  The trimeric interface between HR1 molecules is lined with I548, Q552, L555 

and I559 residues and highlights the importance of hydrophobic interactions to hold the 

core together (Shi et al., 2010).  To generate pFIs of gp41 from its post-fusion 

conformation, different point mutations or deletions were introduced to disturb the 

intramolecular interactions between HR1 and HR2 domains (Fig. 1A).  It was 

hypothesized that such mutations or deletions would open up the hairpin loop thereby 

simulating conformations prior to the formation of the six-helix bundle.  All mutations or 

deletions were restricted to the HR1 domain only so as to avoid changing the 

conformation of the HR2 or MPER domains.  While designing the variants, we also 

experimented with the trimeric nature of gp41-HR1-54Q.  The residues lining the 

trimeric interface (I548, Q552, L555 and I559) were unchanged in variants with point 

mutations but were partially or completely removed in deletion variants. 

First, to reduce the hydrophobic interactions within the hairpin loop, two point 

mutations- L565A and L568A were introduced in the HR1 domain (Fig 1B, named HR1-

AA-54Q).  These two residues were hypothesized to be critical due to their close 

proximity to HR2 domain residues I635 and Y638.  The next construct was designed to 

contain two point mutations, L568E and K574E, which were hypothesized to introduce 

repulsive forces and disrupt the stable six-helix bundle in two ways (Fig 1C, named HR1-

EE-54Q).  The L568 residue on the HR1 domain was in close proximity to HR2 domain 

residue E634 within the same gp41-HR1-54Q molecule. The K574 residue on the HR1 

domain of one molecule was in close proximity to E632 located on the HR2 domain of a 
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neighboring molecule.  Thus, HR1-EE-54Q contained point mutations that were designed 

to destabilize both inter- and intramolecular forces in the trimeric gp41-HR1-54Q.  

Interestingly, in a recent study, L565R and L568E mutations were also used for 

generating prehairpin intermediates by disrupting the intramoelcular interactions between 

HR1 and HR2 domains (Gao et al., 2013).  However, the study did not provide any 

immunogenic characterization of these proteins.   

Finally, to reduce the interactive face between the HR1 and HR2 domains, ten and 

seventeen residues were deleted from the N terminus end of HR1.  These two variants 

were named HR1-Δ10-54K and HR1-Δ17-54K, respectively.  The terminal residue on 

these constructs was also reverted to K as it was later reported to be critical for 10E8 

binding (Huang et al., 2012).   

 

Structural characterization of pFIs  

Due to its stable, six-helix bundle conformation, gp41-HR1-54Q is surprisingly 

resistant to cleavage by the enzyme trypsin. To test if the introduced mutations and or 

deletions were able to destabilize this structure, the pFIs were treated with trypsin.  As 

shown in Fig. 2A, while gp41-HR1-54Q remained mostly undigested after one hour 

trypsin digestion, the pFIs showed different degrees of trypsin sensitivity.  HR1-EE-54Q 

was the most sensitive to trypsin digestion followed by HR1-Δ10-54K, HR1-Δ17-54K 

and HR1-AA-54Q.  The difference in accessibility of trypsin cleavage sites on gp41-

HR1-54Q and the pFIs suggested that structure of the pFIs was significantly different 

from gp41-HR1-54Q.  Strangely, the HR1-Δ10-54K was more susceptible to trypsin 

digestion compared to the HR1-Δ17-54K, which has a shorter HR1 domain. 
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Next, ELISA was performed using NC-1, a mouse mAb capable of recognizing 

the post-fusion six-helix bundle structure (Fig. 2B) (Jiang et al., 1998).  This binding 

requires HR2 domain region ranging from residues 642-657 (Yuan et al., 2009) which is 

present among all the antigens.  Hence, any changes in NC-1 binding would suggest 

conformational loss in the variants and not simply due to the induced mutations or 

deletions in HR1 domain.  Three of the variants, HR1-EE-54Q, HR1-Δ10-54K and HR1-

Δ17-54K showed no NC-1 binding.  Interestingly, HR1-AA-54Q could be recognized, 

but the binding affinity was much weaker than that of gp41-HR1-54Q.  These results 

further supported the idea that introduced point mutations and deletions were successful 

in disrupting the post-fusion conformation, albeit to different extents. 

In the gp41-HR1-54Q crystal structure, the N terminus end of the HR1 domain 

contains residues I548, Q552, L555 and I559; which line the trimeric interface between 

the HR1 cores of the six-helix bundle.  Thus, loss of most or all of these residues will 

likely disrupt the trimeric conformation observed in gp41-HR1-54Q.  The oligomeric 

status of all pFIs was tested using ELISA with 126-7 (Gorny et al., 1989; Robinson et al., 

1991; Tyler et al., 1990; Xu et al., 1991; Yuan et al., 2009), a human mAb antibody that 

can specifically recognize a native trimeric form of the HIV-1 envelope shared between 

both prefusion and post-fusion conformations of gp41 (Yuan et al., 2009).  As shown in 

Fig. 2C, gp41-HR1-54Q, HR1-AA-54Q and HR1-EE-54Q were bound equally well by 

126-7 suggesting that the trimeric conformations of these proteins were similar.  

However, 126-7 failed to recognize both HR1-Δ10-54K and HR1-Δ17-54K along with 

another protein lacking the HR1 domain (names gp41-54Q).  It is important to note that 

the trimer specific binding epitope for 126-7 has been described as ranging between 
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residues 641-648 in the HR2 domain (Yuan et al., 2009).  Since the only difference 

between all the constructs tested for 126-7 binding is the presence or absence of the 

complete or partial HR1 domains, it is likely that this region is also involved in formation 

of a 126-7 reactive trimer.  

   

Antigenic characterization of pFIs  

These results suggested that the introduced mutations or deletions had changed 

the structure of the variants significantly from the post-fusion conformation of gp41-

HR1-54Q.  To test how these changes had affected the presentation of MPER, ELISA 

was performed with four bnAbs (Fig. 3).  While all pFIs showed overall strong binding to 

2F5, there were slight differences.  2F5 bound HR1-AA-54Q and gp41-HR1-54Q with 

virtually same affinity, while binding to HR1-Δ17-54K was slightly enhanced.  Both 

HR1-EE-54Q and HR1-Δ10-54K showed slightly reduced binding.  The differences in 

binding to 4E10 were more obvious.  While HR1-Δ17-54K showed similar recognition as 

gp41-HR1-54Q, HR1-Δ10-54K showed slightly lower recognition.  Interestingly, HR1-

AA-54Q and HR1-EE-54Q showed an even greater reduction binding to 4E10.  The 

binding to Z13e1 also followed a similar pattern to that of 4E10 except that the binding of 

HR1-AA-54Q was less reduced.  The two pFIs containing the terminal K residue, HR1-

Δ10-54K and HR1-Δ17-54K, were recognized well by 10E8, while all other pFIs showed 

poor binding, which is not unexpected given how critical the terminal K is for 10E8 

binding.  Taken together, these results suggested that despite individual differences in 

recognition by different bnAbs, the MPER was fairly accessible in our pFIs.  These 
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findings are also interesting because they demonstrate that changes in the distant HR1 

domain can also influence the exact MPER conformation.  

 

Immunogenic characterization of pFIs  

Next, the immunogenicity of pFIs was evaluated in rabbits using the zinc-chitosan 

adjuvant that elicited strong antibody response against gp41-HR1-54Q (Habte et al., 

2015).  A total of eight rabbits were divided in four groups of two rabbits each.  Each 

group was immunized with one pFI at weeks 0, 4, 9 and 15.  Serum was collected prior to 

immunization and two weeks post immunization, and antigen specific antibody titers 

were determined using ELISA (Fig. 4).  Based on the antibody responses after a single 

round of immunization, the immunogenicity of pFIs appeared to be similar or lower than 

that of gp41-HR1-54Q (Habte et al., 2015).  For rabbits immunized with HR1-AA-54Q, 

titers more than 1x105 after single immunization.  The antibody titers increased more than 

ten folds upon subsequent immunization.  While the titers remained almost the same for 

R2 after two more immunizations, titers reached above 1x107 for R1 after the fourth 

immunization.  Rabbit immunization with a single dose of HR1-EE-54Q elicited lower 

titers ranging approximately between 1x104 to 1x105.  Titers were boosted following 

subsequent immunization and remained at 1x106 or more after the fourth immunization.  

HR1-Δ10-54K and HR1-Δ17-54K showed strikingly low immunogenicity based on titers 

elicited after a single round of immunization.  However, titers were successfully boosted 

to 1x106 or higher for all rabbits following subsequent immunizations.  Titers even 

reached higher than 1x107 for the HR1-Δ17-54K R1 following third immunization with 

but decreased more than ten fold after the fourth immunization.   
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Detailed characterization of the antibody responses against pFIs 

Since the 54 amino acids spanning the HR2 and MPER domains of the pFIs were 

identical to that of gp41-HR1-54Q except the terminal K683 in HR1-Δ10-54K and HR1-

Δ17-54K, the linear immunogenic epitopes in this region were further mapped using a 

mixture of N- and C-terminus biotinylated, overlapping 10-mer peptides (Fig. 5).  The 

linear peptides recognized by rabbits immunized with HR1-AA-54Q were somewhat 

similar to the response seen against gp41-HR1-54Q, especially towards the C-terminus 

end.  While the rabbit sera also bound some peptides spanning the HR2 domain, MPER 

domain peptide 671 (671NWFDITNWLW680) was recognized equally well by both 

rabbits.  For HR1-EE-54Q immunized rabbits exhibited a similar pattern with most of the 

linear immunogenic peptides located in the N terminus of the HR2 domain and the C 

terminus end of MPER.  Little to no antibody recognition was seen for peptides spanning 

the cluster II region (644RLIEESQNQQEKNEQELLAL663) that typically elicits non-

neutralizing antibodies (Alam et al., 2008; Frey et al., 2010; Hioe et al., 1997).  Rabbits 

immunized with HR1-Δ10-54K strongly recognized peptides 632 (632EREISNYTDI641), 

and 635 (635ISNYTDIIYR634) in addition to 629 (629MEWEREISNY638), suggesting a 

shift in the response despite the recognition of peptide 671.  The most striking change in 

linear epitope recognition was seen in rabbits immunized with HR1-Δ17-54K.  While 

peptide 671 showed strong signal in both rabbits, the majority of the peptides spanning 

the HR2 domain including the cluster II region also bound strongly.   

Since all rabbits elicited immune response towards the C terminus end of the 

MPER, the sera was titered using a 13-mer 671 peptide (671NWFDITNWLWYIK683) that 

contained the complete epitopes for both 4E10 and 10E8 (Cardoso et al., 2005; Huang et 
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al., 2012).  As shown in Fig. 6, all sera recognized this longer peptide, albeit to different 

extents.  While binding to 13-mer peptide agreed well with binding to shorter peptides 

(Fig. 5), there was a major difference in binding affinity of HR1-Δ17-54K R2.  This 

serum displayed rather weak binding to the 13-mer despite showing very strong binding 

to the 10-mer 671 peptide at the same dilution.  It is important to note that while the 10-

mer binding assay was performed using a mixture of both N- and C-terminus biotinylated 

peptides, the 13-mer peptide was only biotinylated at its C-terminus K683 residue.  

Furthermore, this serum exhibited good binding against the 10-mer, C-terminus 

biotinylated 671 peptide (data not shown).  Hence, the difference in binding to the 13-mer 

peptide might be due to other factors like peptide length, coating efficiency, and peptide 

conformations. 

Finally, all rabbit sera were tested for neutralization using a luciferase-based assay 

in TZM-bl cells against pseudoviruses SF162 (tier 1A, clade B), MW965.26 (tier 1A, 

clade C), and MN.3 (tier 1A, clade B).  Unfortunately, none of the sera possessed any 

neutralization activity (data not shown).   

 

Fine mapping analyses of sera targeting near 4E10/10E8 epitope 

 To understand why antibodies elicited by FIs failed to neutralize despite targeting 

near the 4E10 and 10E8 epitopes, a fine epitope binding analyses was performed using 

alanine scanning mutants of the 13-mer 671 peptide.  As shown in Fig. 7A, all sera 

(except the poorly binding sera from the previously mentioned HR1-Δ17-54K R2) were 

normalized to give comparable binding signals to the wild type peptide before performing 

the alanine scan analysis.  First, for all rabbits tested, binding to peptide containing the 
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D674A mutation was poor, probably in part due to the loss of helical conformation of this 

peptide as discussed elsewhere (Brunel et al., 2006).  For R1 in both HR1-AA-54Q and 

HR1-EE-54Q immunized groups (Fig. 7B and 7C; top panel), the binding pattern was 

similar with little decrease in binding upon alanine replacements of residues at the N-

terminus end. This suggests that these rabbits elicit a somewhat diverse polyclonal 

antibody response towards the 4E10 and/or 10E8 epitope.  Surprisingly, R2 from both 

HR1-AA-54Q and HR1-EE-54Q groups (Fig. 7B and 7C; bottom panel) appeared to 

target residues W678 and L679, suggesting the epitope binding specificities of these 

rabbits were not as broad as those discussed above. A similarly focused response 

targeting residues W678 and L679, but also including I675, was observed in HR1-Δ17-

54K R1.  It is important to note that animal-to-animal variation as seen in HR1-AA-54Q 

and HR1-EE-54Q immunized rabbits is common, and this type of variation has been 

reported in our previous reported gp41-HR1-54Q study. The alanine scan pattern for 

HR1-Δ10-54K immunized rabbits (Fig. 7D) appeared slightly different due to the 

recognition of W672 residue, in addition to residues I675, W678 and L679.  Overall these 

binding specificities are quite different from gp41-HR1-54Q immunized rabbits that 

recognized residues F673, I675, T676, N677, W678 and Y681 to different degrees(Habte 

et al., 2015). In comparison, antibodies elicited by pFIs lacked N677 binding but 

recognize a new L679 residue, suggesting a shift in MPER binding. 

While alanine scan patterns showed slight differences between the rabbits 

immunized with different pFIs, the real meaning of these binding patterns were revealed 

upon mapping the critical binding residues onto the structure of the peptide co-crystalized 

with 4E10 (Fig. 8) (Cardoso et al., 2007).  Since critical binding residues for HR1-Δ10-
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54K immunized rabbits included residues for rabbits immunized with other pFIs, these 

were plotted onto the 4E10 peptide under the assumption that our 13-mer peptide also is a 

similar alpha helix.  As shown in Fig. 8A, gp41-HR1-54Q immunized rabbits recognized 

faces opposite to or perpendicular to the 4E10 binding face while overlapping residues 

F673 and T676.  Surprisingly, the binding epitope for HR1-Δ10-54K immunized rabbits 

was rotated so that the residues overlapping with 4E10 binding face now involved L679 

and W672 (Fig. 8B, C and D) but lacked residues T676 and F673.  As mentioned earlier, 

antibodies against all of the other pFIs also targeted the L679 residue that lies opposite to 

the N677 residue recognized by gp41-HR1-54Q.  Due to the additional recognition of the 

W672 residue, we conclude that HR1-Δ10-54K came the closest to eliciting antibodies 

against the 4E10 epitope.  The lack of sera neutralizing activity in these animals is most 

likely due to the inaccessibility of this epitope on the native virion.  

 

Discussion 

In a previous study, we described the structural and immunological 

characterization of gp41-HR1-54Q, which represented a near post-fusion form of gp41 

with an exposed MPER (Habte et al., 2015; Shi et al., 2010).  While this antigen was 

unable to elicit neutralizing activity in rabbits, it elicited antibody response overlapping 

the 4E10 and 10E8 epitope.  Since it has been previously speculated that anti-MPER 

bnAbs primarily target the gp41 fusion intermediate form (Chen et al., 2014; Dimitrov et 

al., 2007; Frey et al., 2008), we asked two important questions.  First, is it possible to 

convert the post-fusion structure of gp41-HR1-54Q to a fusion intermediate form?  
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Second, is such an intermediate form capable of eliciting bnAbs in rabbits via 

immunization? 

To answer these questions, we generated four pFIs by introducing mutations or 

deletions in the HR1 region of gp41-HR1-54Q.  These changes were able to destabilize 

the structure by different degrees as demonstrated by differences in trypsin sensitivity and 

recognition by mAbs NC-1 and 126-7.  All of the pFIs elicited strong immune response 

in rabbits with titers reaching 1x107 or higher after multiple immunization.  However, 

upon closer examination of earlier antibody titers, it is clear that these variants are not as 

immunogenic as gp41-HR1-54Q, which was able to elicit titers as high as 1x106 after a 

single dose of immunization (Habte et al., 2015).  Based on this subtle difference it is 

tempting to speculate that the gp41 post-fusion form might be inherently more 

immunogenic due to its stable conformation.  Interestingly, antibody titers against HR1-

AA-54Q, which has comparatively milder disruptions in the six-helix bundle, were 

similar to gp41-HR1-54Q.  Despite having identical sequences for HR2 and MPER 

domains, different pFIs elicited remarkably different antibody responses towards the 

linear peptides in this region.  Again, these results suggest that conformations and 

immunogenicity of HR2 and MPER domains are highly dependent on the context in 

which they are presented.  Despite the differences in recognition of other regions, all pFIs 

showed strong response against the C terminus end of MPER represented by peptides 671 

(671NWFDITNWLW680) and 674 (674DITNWLWYIK683).   

Even though the pFIs elicited strong immune responses, sera from the immunized 

rabbits failed to neutralize the virus.  Antibodies that bind to the HR1 domains can 

prevent the six-helix bundle formation and hence, prevent virus fusion (Gustchina et al., 
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2009; 2007; Louis et al., 2005; 2003; Miller et al., 2005; Nelson et al., 2008).  D5 and 

HK20 represent two such human antibodies with modest neutralization (Corti et al., 

2010; Miller et al., 2005).  To elicit similar antibodies through immunization, a few 

studies have generated HR1 based constructs fused to artificial trimerization domains 

(Bianchi et al., 2010; Qi et al., 2010).  While these studies reported weak neutralization, 

the lack of similar activity in our study is probably due to the HR1 mutations or deletions 

introduced in our construct.  In fact, residues L568 and K574 are directly involved in 

binding to both D5 and HK20 (Luftig et al., 2006; Sabin et al., 2010).  In addition, the 

accessibility of this hydrophobic pocket might be limited due to steric constraints (Eckert 

et al., 2008; Hamburger et al., 2005; Sabin et al., 2010).  At the same time, it is important 

to highlight that our study is significantly different from the studies discussed above 

because it focuses on the characterization of the MPER domain in context of a soluble 

fusion intermediate.  A recently reported study (Vassell et al., 2015) discussed the 

generation of similar gp41 constructs containing HR1, HR2 and MPER domains.  While 

the authors claimed that their immunogens presented the MPER in a fusion intermediate 

conformation due to the truncated HR1 domain, all of them showed strong binding to 

NC-1, suggesting the formation of the six-helix bundle.  In contrast, all of our antigens, 

including HR1-Δ10-54K and HR1-Δ17-54K represented distinct conformations as they 

failed to bind NC-1.  Despite these differences, both studies failed to elicit anti-MPER 

neutralizing antibodies, suggesting that the generation of a soluble gp41 fusion 

intermediate by disrupting the post-fusion form is not sufficient to elicit bnAbs.   

A detailed binding analysis of this polyclonal response using the alanine scan 

mutants of the13-mer peptide harboring the 4E10 and 10E8 epitopes revealed some 
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important findings.  First, all pFIs elicited antibodies that targeted the L679 residue 

instead of N677.  This highlights a remarkable shift from the antibody binding pattern 

elicited by gp41-HR1-54Q.  Additionally, the HR1-Δ10-54K variant was able to elicit 

antibodies that bind W672 residue.  Alanine replacement at this residue has been reported 

to reduce 4E10 binding by over 1000-fold highlighting its importance (Brunel et al., 

2006).  Both I675 and L679 also contribute significantly to 4E10 binding (Brunel et al., 

2006; Cardoso et al., 2005).  However, the failure to recognize F673 and T676 suggest 

differences in binding patterns between our vaccine-induced antibodies and 4E10.  In the 

absence of a crystal structure of HR1-Δ10-54K, it is hard to speculate how the ten-residue 

deletion from the N terminus end influenced the overall MPER conformation to facilitate 

this major shift in antibody binding to the 4E10 epitope.  Nevertheless, these results 

clearly demonstrate that changes outside the MPER domain can significantly influence 

the binding face targeted by anti-MPER antibodies elicited by immunization.  These 

results also highlight a major hurdle in MPER-based vaccine design.  Since gp41-based 

antigens are difficult to crystallize, we cannot predict the exact MPER conformation 

despite characterizing antigens using SPR or ELISA-based bnAb binding assays.  In the 

absence of definitive methods, MPER-based vaccine design continues to heavily rely on 

empirical design and characterization.  However, analyzing the success of a vaccine 

candidate based merely on the ability to neutralize provides insufficient information for 

improvement.  Performing a detailed evaluation of the immune response elicited in 

animal models, especially in terms of binding to critical epitopes, might prove to be more 

fruitful in terms of future vaccine design. 
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It is also important to acknowledge that the failure to elicit anti-MPER 

neutralizing antibodies might be due to the absence of a lipid membrane.  This idea is 

support by a recent report where a fusion intermediate form of gp41 was covalently 

linked onto liposomes to deliver MPER in a membrane context(Lai et al., 2014).  This 

fusion intermediate form was also constructed by replacing the N terminus part of the 

HR1 domain with a GCN4 trimerization domain.  However, the authors did not replace 

the immunodominant C-C loop with a flexible linker.  Unlike our study, this construct 

elicited modest cross clade neutralization against Tier 1 viruses belonging to subtypes A, 

B and C.  Future studies that combine our putative fusion intermediates with a lipid-based 

delivery might be able to elicit similar or better responses, especially since they do not 

contain the non-neutralizing immunodominant C-C loop.  Overall, the results presented 

in this study further our understanding of the complex structure and immunogenicity of 

gp41 envelope and provide new insights into development of MPER based vaccines.   

 

Materials and Methods: 

Cloning, Expression and Purification of pFIs 

In order to generate pFI constructs with point mutations, the QuikChange® XL 

Site directed mutagenesis kit was used as per the manufacturer’s instructions using the 

original gp41-HR1-54Q plasmid as the template(Shi et al., 2010).  For HR1-AA-54Q, the 

mutations L565A and L568A were introduced using the sense primer 5’-

GAGGCCCAGCAGCACGCCCTGCAGGCCACCGTGTGGGGCATC-3’ and the 

antisense primer 5’-

GATGCCCCACACGGTGGCCTGCAGGGCGTGCTGCTGGGCCTC-3’.  For HR1-
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EE-54Q, the mutations L568E and K574E were introduced using the sense primer 5’-

GCACCTGCTGCAGGAGACCGTGTGGGGCATCGAGCAGGGAGGAGG-3’ and the 

antisense primer 5’-

CCTCCTCCCTGCTCGATGCCCCACACGGTCTCCTGCAGCAGGTGC-3’.   

For the deletion variants, 10 and 17 residues were deleted from the N terminus 

end of the HR1 domain as shown in Fig 1A.   Both constructs were synthesized from IDT 

(Integrated DNA Technology) in the pUC57 backbone with flanking restriction sites for 

BamHI and EcoRI at the 5’ and 3’ ends of the constructs respectively.  The sequence was 

also altered to code for the terminal 683K residue instead of the 683Q as in gp41-HR1-

54Q.  These constructs were cloned into the pET-21a vector (Novagen; cat#69740-3) 

using BamHI and EcoRI.   All constructs were expressed and purified similar to gp41-

HR1-54Q (Shi et al., 2010).  The final proteins were dialyzed into 1x PBS (pH 8.0) and 

stored at -80 degrees. 

 

Trypsin sensitivity assay 

 All pFIs were incubated with trypsin at 1:100 (enzyme: protein) mass ratio for 

one hour at 37 degrees.  3 μg of untreated and trypsin treated samples were then run on a 

Novex® 10-20% tricine gel (Thermo Fisher Scientific; cat# EC6625BOX) 

 

Rabbit immunization  

Eight New Zealand white female rabbits (2.5 to 3 kg) were purchased from 

Charles River (USA), housed under specific pathogen free environments and used in 

compliance with the animal protocol approved by IACUC of Iowa State University.  To 
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evaluate the immunogenicity of the pFIs, rabbits were divided into four groups of two 

and each group was immunized with a different pFI in complex with the Zn-chitosan 

adjuvant.  The immunization protocol including the adjuvant preparation, 

antigen/adjuvant dosage, the immunization and bleeding schedule were all exactly the 

same as that previously described for gp41-HR1-54Q (Habte et al., 2015). 

 

Enzyme-linked immunosorbent assay (ELISA) 

 All ELISAs were performed using the standard protocol described for gp41-

HR1-54Q (Habte et al., 2015) except for the use of an alternate blocking buffer consisting 

of PBS (pH 7.5) with 2.5% skim milk and 5% calf sera.    For ELISAs testing the binding 

of antibodies NC-1, 126-7, 2F5, 4E10, Z13e1 and 10E8, coating antigen amounts for all 

other antigens equimolar to 30 ng/well of gp41-HR1-54Q using the same coating 

conditions as described for gp41-HR1-54Q.  In order to determine end point titers, all 

antigens were coated at 30 ng/well. The end-point ELISA titers were defined as serum 

dilution factor that gave readings of average + 2x SD of the background as described 

previously(Qin et al., 2014).  Coating for linear epitope mapping using 10-mer 

biotinylated peptides and 13-mer alanine scanning was also performed as previously 

described (Habte et al., 2015).   

 

Neutralization assays 

Neutralization assays were performed in TZM-bl cells as previously described (Li 

et al., 2005; Qin et al., 2014; Wei et al., 2002).  Viruses tested included SF162 (tier 1A, 

clade B), MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade B). Murine leukemia 
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virus Env-pseudotyped virus was used as a negative control.  
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Figures 

 

 

 

Fig 1: Design of putative fusion intermediates of gp41-HR1-54Q.  (A) A domain 

structure of gp41-HR1-54Q consisting of the T7 tag FP, heptad repeat 1 (HR1), GGGGS 

linker, heptad repeat 2 (HR2), membrane proximal external region (MPER) and the 6x 

His tag is shown.  The HR1 domain sequence, along with the terminal 683Q residue, is 

indicated for gp41-HR1-54Q.  Point mutations and deletions introduced in the HR1 

domain to generate variants HR1-AA-54Q, HR1-EE-54Q, HR1-∆10-54K and HR1-∆17-

54K are indicated.  The terminal 683Q residue was also reverted back to 683K in HR1-

∆10-54K and HR1-∆17-54K.  (B) The mutations introduced in HR1-AA-54Q- L565A 

and L568A are plotted on the gp41-HR1-54Q crystal structure (pdb: 3K9A) (Shi et al., 

2010) to highlight the proximity of these residues to the neighboring I635 and Y638 

residues located on the HR2 domain.  (C) The mutations introduced in HR1-EE-54Q- 

L568E and K574E are plotted on the gp41-HR1-54Q crystal structure to display the 

effect of these mutations on the neighboring E632 and E634 residues.  The truncations 

introduced at the N terminus end of the HR1 domain are plotted onto the gp41-HR1-54Q 

trimer to show the possible effect of these changes on the exposure of the HR2 and 

MPER domains in variants  (D) HR1-∆10-54K and (E) HR1-∆17-54K. 
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Fig 2: Structural characterization of putative fusion intermediates.  (A) Differences 

in sensitivity to trypsin digestion of pFIs in comparison to gp41-HR1-54Q.  (B) ELISA 

with mAb NC-1 to detect the presence of the six-helix bundle in the variants.  gp41-HR1-

54Q was used as a positive control while another protein (gp41-54Q), that lacks the HR1 

domain, was used as a negative control.  (C) ELISA with mAb 126-7 was used to detect 

the presence of a trimer in the variants.  gp41-HR1-54Q and gp41-54Q were used as 

positive and negative controls respectively.   
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Fig 3: Antigenic characterization of putative fusion intermediates.  The antigenic 

integrity of the variants was tested by performing ELISA with bnAbs 2F5, 4E10, Z13e1 

and 10E8. 
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Fig 4: Antibody titers of putative fusion intermediates.  Sera post every immunization were tested using ELISA to determine the 

end-point antibody titer against the corresponding antigen.  Preimmune serum was used as a negative control. 
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Fig 5: Mapping of linear immunogenic epitopes.  Sera post fourth immunization was 

tested for binding against biotinylated 10-mer peptides (mixture of both N-terminus and 

C-terminus biotinylated peptides) spanning both HR2 and MPER domains.  The amino 

acid sequence of each peptide is indicated by horizontal brackets.  The first and last 

residue in the entire peptide set is indicated in red as they can differ in the four variants. 

The core binding epitopes for 2F5, 4E10, and 10E8 bnAbs are also indicated.  

Preimmune serum was used as a negative control. 
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Fig 6: Antibody titers against MPER peptide.   Sera post fourth immunization was tested for binding against biotinylated 13-mer 

peptide (671NWFDITNWLWYIK683) containing the complete binding epitope for both 4E10 and 10E8.  Preimmune serum was used as 

negative control. 
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Fig 7: PepScan analysis of the C-terminus end of MPER.  (A) Sera post fourth immunization was tested for binding against 

biotinylated 13-mer peptide (671NWFDITNWLWYIK683).  The sera dilutions were normalized to give comparable binding signal (AA-

R1 at 2000-fold dilution; AA-R2 and EE-R2 at 100-fold dilution; EE-R1 at 600-fold dilution; ∆10-R1 at 300-fold dilution; ∆10-R2 at 

400-fold dilution; ∆17-R1 at 5000-fold dilution). (B-E) The same sera dilutions were tested for binding to mutant peptides.  Results 

are shown as the percentage of binding to the wild type peptide showed in panel (A).   
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Fig 8: Structural comparison of critical binding residues for HR1-∆10-54K 

immunized sera with those of HR1-54Q immunized sera and 4E10.  (A) Critical 

binding residues for sera from gp41-HR1-54Q immunized rabbits are plotted (in red) 

onto the peptide co-crystalized with 4E10 (pdb: 2FX7) (Cardoso et al., 2007).  Residues 

critical for 4E10 binding are shown in green.  Residues common to both are shown in 

blue. (B) Critical binding residues for sera from HR1-∆10-54K immunized rabbits were 

also plotted on the same peptide revealing significant difference form the binding pattern 

seen in gp41-HR1-54Q. (C) Lateral view of the peptide displaying critical binding 

residues for HR1-∆10-54K rabbit sera and 4E10.  (D) Position of all the HR1-∆10-54K 

critical residues in context of the 4E10 bound peptide.  The heavy and light chains for the 

antibody are indicated as H and L. 
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Abstract 

Eliciting broadly neutralizing antibodies through immunization is an important 

goal in the field of HIV-1 vaccine development.  Several patient isolated antibodies 

targeting the membrane-proximal external region (MPER) of the gp41 envelope subunit 

demonstrate cross-clade neutralization with high potency.  However, it has been difficult 

to induce such antibodies through vaccination.  In the absence of definitive information 

about native MPER conformations capable of generating broad neutralizing antibodies 

(bnAbs), vaccine development efforts must focus on a systematic immunological 

characterization of MPER in different structural contexts.  We have previously described 

the immunogenicity of MPER in the context of multiple gp41 ectodomain antigens.  In 

this study, a gp41-54TM antigen consisting of the heptad repeat 2 (HR2), MPER and 

transmembrane (TM) domains was generated and was successfully delivered using 

liposomes.  The antigen-loaded liposomes were bound well by MPER bnAbs, suggesting 

that the accessibility of the MPER domain remained unhindered.  Immunization with 

loaded liposomes mounted strong antibody response in rabbits.  Detailed epitope analysis 

revealed that antibodies were elicited against two major linear peptides including one 

harboring the 4E10 epitope.  Our result demonstrates that the MPER domain can be 

successfully targeted using a liposomal delivery system and serves as a template for 

designing future anti-MPER vaccines.  
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Introduction 

Despite more than 30 years of research, efforts to develop a clinically successful 

HIV-1 vaccine have largely failed.  While there might be multiple correlates of 

protection, it is widely hypothesized that antibodies capable of neutralizing multiple 

clades of HIV-1 are an important component of a successful vaccine (Excler et al., 2015; 

B. D. Walker and Burton, 2008).  Indeed, multiple studies have demonstrated that these 

broadly neutralizing antibodies (bnAbs) can confer protection through passive 

immunization (Balazs et al., 2012; Ferrantelli et al., 2003; Hessell et al., 2009; Mascola et 

al., 2000; Shibata et al., 1999).  These broadly neutralizing antibodies (bnAbs) are 

elicited in a fraction of the virus-infected population and are generated against a few 

well-defined, conserved epitopes on the HIV-1 envelope protein.  Recent advances in 

isolation of bnAbs (Bonsignori et al., 2011; Gaebler et al., 2013; Gray et al., 2011; Scheid 

et al., 2009; L. M. Walker et al., 2009; Wardemann et al., 2003), coupled with their 

structural characterization at high resolution (Huang et al., 2012; Julien et al., 2013b; 

Pejchal et al., 2011; Scharf et al., 2014; Zhou et al., 2010), have intensified efforts to 

design newer immunogens and immunization strategies that can induce bnAbs against 

these vulnerable sites.   

The gp120 envelope subunit contains multiple sites; namely the receptor-binding 

site, the glycan-V3 loop, and the V1/V2 loop region; which can generate bnAbs (van Gils 

and Sanders, 2013).  However, the highly conformational and discontinuous nature of 

these epitopes, the extensive glycosylation and the presence of other immunodominant 

decoys provides substantial challenges towards designing a gp120-based vaccine 

(Pantophlet and Burton, 2006; Sodroski et al., 1998; Wei et al., 2003).  In comparison, 
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the gp41 subunit contains only one major epitope, named the membrane proximal 

external region (MPER), that is capable of eliciting bnAbs including 4E10 and 10E8 that 

neutralize about 98% of the HIV-1 isolates (Huang et al., 2012; Montero et al., 2008; 

Stiegler et al., 2001).  Furthermore, as revealed by the recent crystal structures of the 

native envelope, this continuous, linear epitope might not be involved in interprotomer 

interactions and might fold independently in the vicinity of a viral membrane (Julien et 

al., 2013a; Pancera et al., 2014).  These properties favor the use of MPER as a vaccine 

candidate against HIV-1. 

Unfortunately, most attempts to elicit bnAbs using MPER-based vaccines has 

failed (discussed in (Habte et al., 2015)).  While a few of these have elicited modest 

cross-clade neutralizing antibodies (Hulsik et al., 2013; Krebs et al., 2014; Lai et al., 

2014; Ye et al., 2011; Yi et al., 2013), none have matched the breadth and potency of 

bnAbs elicited in infected patients.  At least two major explanations have been suggested 

for these failures.  First, it has been argued that anti-MPER bnAbs are self-reactive and 

hence prevented from generation by elimination of these self-reactive B cells during 

differentiation.  This idea is largely based on the cross-reactivity and knock-in mice 

experiments performed using two anti-MPER bnAbs:  2F5 and 4E10 (Alam et al., 2008; 

Doyle-Cooper et al., 2013; Haynes et al., 2005; Verkoczy et al., 2013).  However, the 

recent discovery of the more potent 10E8 bnAb that lacks such cross-reactivity (Huang et 

al., 2012) suggests that such generalization about anti-MPER bnAbs might not be true.  

The second and more likely reason for the failure of MPER-based vaccines is the limited 

understanding of viral and host factors involved in the generation of these bnAbs 

(Stamatatos et al., 2009).  While the MPER domain is accessible to bnAbs only after 
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receptor engagement, the lack of structural information about specific MPER 

conformation(s) that can trigger the development of these bnAbs is a major hurdle in 

MPER-based vaccines.  Hence, studies that evaluate MPER immunogenicity in different 

gp41 contexts are necessary. 

In our attempt to design gp41-based vaccines, we have previously characterized 

constructs that present the MPER in a near post-fusion conformation (Habte et al., 2015), 

putative fusion-intermediate conformations (unpublished, Chapter 3) and a putative pre-

fusion conformation (unpublished, gp41-54Q).  While none of these induced detectable 

neutralizing activity in sera from immunized rabbits, their characterization revealed 

important differences in immunogenicity and the epitopes targeted. MPER presentation 

in both the context of a near post-fusion conformation and a fusion-intermediate 

conformation elicited antibodies against the C-terminus end of MPER that contains the 

4E10 and 10E8 epitopes.  However, one of the fusion-intermediate constructs generated 

antibodies targeting closest to and partially overlapping the neutralizing face of MPER.  

In comparison, animals immunized with the gp41 pre-fusion state mounted responses 

predominantly towards the cluster II epitope.  Regardless, all of these constructs lacked 

the neighboring transmembrane (TM) domain following the C-terminus end of MPER.  

The lack of the TM domain might have allowed higher MPER flexibility and elicitation 

of antibodies to the non-neutralizing face of MPER.   

In this study, using the gp41-54TM antigen, we characterized MPER 

immunogenicity in the presence of both of its neighboring domains, namely the heptad 

repeat 2 (HR2) domain and the TM domain.  It was hypothesized that incorporation of 

the transmembrane domain might provide more structural rigidity to the otherwise free 
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MPER as observed in our previous studies characterizing soluble gp41 antigens(Habte et 

al., 2015) (Chapter 3 and unpublished, gp41-54Q).  Second, the transmembrane domain 

would anchor the MPER on a membrane, thereby mimicking the MPER presentation on 

the native virion.  The antigen was delivered on liposomes with the TLR4 agonist 

monophosphoryl lipid A (MPLA) adjuvant as it can be directly incorporated in the 

liposomes.   

 

Results 

Design and characterization of gp41-54TM 

The gp41-54TM antigen contained 54 amino acids spanning HR2 and MPER 

along with the native TM domain of HIV-1 (Fig. 1A).  The protein was expressed in 

E.coli, purified using a C-terminus histidine tag and refolded in the presence of detergent 

(Fig. 1B).  As shown in Fig. 1C, the antigenicity of gp41-54TM was evaluated using 

ELISA binding to different antibodies.  The protein was recognized well by all anti-

MPER bnAbs including 2F5, 4E10, Z13e1 and 10E8; suggesting that the MPER domain 

was readily accessible.  Of all the anti-MPER bnAbs, 2F5 showed the strongest binding 

to gp41-54TM suggesting better exposure of this region.  In line with this observation, 

strong binding signal was also detected using another antibody, 2C2, which recognizes 

the non-neutralizing epitope upstream of the 2F5 epitope. 

 

Characterization of gp41-54TM on the surface of liposomes 

To design a suitable platform for the delivery of gp41-54TM, simple liposomes 

comprising of phosphatidyl choline were generated and loaded with the antigen by 
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extensive dialysis.  The quality of the antigen-loaded liposomes was evaluated by 

immunogold staining with antibodies.  Initially, small, homogenous, liposomes were 

generated by extrusion through 100 nm polycarbonate filters.  However, each liposome 

showed little immunogold labeling when using 2F5 as the primary antibody 

(Supplementary Fig. 1).  These results might suggest that each liposome was only able to 

hold a small amount of antigen, or that loaded antigens were not accessible due to the 

rigid structure with sharper lipid curvature.  Since the ultimate goal was to develop a 

platform that can induce a strong antibody response, it was important to generate 

liposomes that displayed multiple antigen copies so as to crosslink the B-cell receptors 

upon immunization.  Therefore, larger liposomes were generated using 1 μm 

polycarbonate filters.  This generated a more polydisperse liposomal population 

consisting of smaller and larger liposomes.  Interestingly, the larger liposomes 

demonstrated much better labeling as shown in Fig. 2.  The antigen was recognized well 

by bnAbs 2F5, 4E10, Z13e1 and 10E8; suggesting that these MPER epitopes were 

accessible on the surface of the liposome.  Labeling was also seen against the non-

neutralizing 2C2 antibody in agreement with the ELISA data.  The presence of several 

gold beads on the surface of these large liposomes suggested that multiple antigens were 

loaded onto each liposome.  Unloaded liposomes were used as negative controls and did 

not show any labeling with the 10E8 antibody.   

   

Immunogenic characterization of gp41-54TM  

For rabbit immunizations, the adjuvant MPLA was used since it is easily 

incorporated into the liposomes during their formulation.  Following antigen loading, the 
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total solution containing both loaded and unloaded liposomes were used for 

immunization.  While the unloaded liposomes did not contain any antigen, they would 

still possessed adjuvant properties due to the MPLA.  As shown in Fig. 3, antibody titers 

reached about 103 to 104 after a single dose of immunization.  Following the second 

immunization, titers increased to above 105 for rabbits R1 and R2 and above 106 for 

rabbit R3.  Titers were boosted slightly following subsequent immunization, reaching as 

high as 107 for rabbit R3.  Overall, the gp41-54TM protein was fairly immunogenic when 

delivered on liposomes along with the MPLA adjuvant. 

 

Detailed characterization of the antibody responses against gp41-54TM 

The ectodomain of gp41-54TM is identical to that of the soluble gp41-54Q 

antigen (unpublished study) except for the terminal 683 residue (K in gp41-54TM versus 

Q in gp41-54Q).  To evaluate how the incorporation of a transmembrane domain affected 

the immunogenicity of linear epitopes in the HR2 and MPER domains, peptide ELISA 

was performed using overlapping 10-mer peptides spanning these domains(Habte et al., 

2015).  Multiple linear peptides were bound strongly by the rabbit sera after third 

immunization (Fig. 4).  The two major peptides that were recognized by all three rabbits 

were the HR2 domain peptide 638 (638YTDIIYRLIE647) and the MPER peptide 671 

(671NWFDITNWLW680), which also contains the core binding epitope for the bnAb 

4E10.  Several other peptides were recognized somewhat sporadically for different 

rabbits.  Rabbit R1 bound peptide 662 (662ALDKWASLWN671) that contains the 

complete binding epitope for 2F5.  Rabbit R1 also recognized peptides 629 

(629MEWEREISNY638), 632 (632EREISNYTDI641), 650 (650QNQQEKNEQE659), while 
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rabbit R3 recognized peptides 644 (644RLIEESQNQQ653) and 647 

(647EESQNQQEKN656).  In comparison, animals immunized with the soluble gp41-54Q 

recognized a different pattern after third immunization (Supplementary Fig. 2).  First, 

most of the gp41-54Q immunized animals did not show strong binding to either peptide 

638 or 671 as recognized by gp41-54TM immunized animals.  Second, peptides spanning 

641IIYRLIEESQNQQEKNEQELLQLDK665 appeared to be highly immunogenic in 

majority of the animals immunized with soluble gp41-54Q.  While peptides 644, 647 and 

650 were also sporadically recognized in gp41-54TM immunized animals, the response 

to this cluster II non-neutralizing region was less robust compared to the gp41-54Q 

animals. 

Despite eliciting antibodies against the peptide that contains the 4E10 epitope, 

none of the rabbit sera were able to neutralize pseudoviruses SF162 (tier 1A, clade B), 

MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade B) (data not shown).  To 

understand how the vaccine-elicited antibodies bind the 671 peptide differently as 

compared to 4E10 bnAb, we attempted to perform sera binding analysis using alanine 

scanning mutant peptides as previously described (Habte et al., 2015).  Oddly, rabbit sera 

did not show good binding to the C-terminus biotinylated peptide used for this analysis 

(data not shown).  This suggests that antibodies elicited by gp41-54TM are significantly 

different from those elicited by ectodomain only antigens gp41-HR1-54Q and derivative 

fusion intermediates.  Future evaluation of sera using N-terminus biotinylated, 13-mer 

671 peptide and its alanine scan mutants might provide better understanding of the exact 

binding face that gp41-54TM-induced antibodies target.  Results from these experiments 

will be critical in understanding how the addition of a transmembrane domain influences 
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the exposure of the 4E10 binding and thus neutralizing face of MPER, thereby improving 

the design of next generation of gp41-based immunogens. 

 

Discussion 

Epitope binding studies of 4E10 and 10E8 bnAbs suggest that the MPER peptide 

contains a neutralizing face and a non-neutralizing face (Brunel et al., 2006; Huang et al., 

2012).  To elicit 4E10- and 10E8-like bnAbs, MPER vaccines must induce antibodies 

that bind this neutralizing face.  We have previously evaluated the immunogenicity of a 

wide variety of MPER antigens that contained only the gp41 ectodomain ((Habte et al., 

2015) and Chapter 3).  While these antigens had significant differences at their N-

terminus end, the C-terminus end of MPER was always free.  It is possible that such 

antigen design inherently contributed to a flexible MPER capable of eliciting antibodies 

against the faces opposite or perpendicular to the neutralizing antibody binding face.   

To restrict MPER presentation so that antibodies are mounted against the 

neutralizing face, a new antigen named gp41-54TM was designed to include the 

neighboring transmembrane (TM) domain.  The TM domain allowed anchoring of the 

MPER to the surface of phosphatidyl choline liposomes thereby mimicking a membrane 

environment.  As shown in this study, membrane presentation of MPER did not restrict 

access by bnAbs suggesting that these epitopes remained accessible.  Interestingly, the 

use of larger liposomes allowed us to load multiple antigens on the same platform, which 

might be important for eliciting strong B-cell responses.  In line with this, our gp41-

54TM delivery on liposomes containing the MPLA adjuvant induced robust antibody 

response in rabbits.  Furthermore, all three rabbit elicited antibodies against the linear 
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peptide containing the 4E10 epitope.  These results suggest that it is possible to elicit 

antibodies against the 4E10 epitope using a larger gp41 antigen that is delivered in the 

context of the membrane.  It is important to note that the linear epitopes recognized were 

somewhat different from those elicited by the gp41-54Q antigen.  Overall, in comparison 

to the membrane bound gp41-54TM, the soluble gp41-54Q antigen elicited a more robust 

response against the non-neutralizing cluster II region.  It is possible that the ectodomain 

might fold differently in these two immunogens, especially since the hydrophobic MPER 

in gp41-54Q does not contain any C-terminus transmembrane domain.  Surprisingly, 

despite strong binding of 2F5 to gp41-54TM, rabbits failed to elicit strong antibody 

response to this region., highlighting that epitope antigenicity does not always correlate 

with its immunogenicity. 

Multiple studies have described the use of liposomal delivery systems in attempts 

to induce MPER-targeting bnAbs.  While the liposome composition, immunization 

protocol and immunized host vary among these studies, these approaches can be 

categorized based on the antigen and its presentation on the delivery platform.  First, 

several groups have delivered MPER peptides that lack any lipid anchors or 

transmembrane domains (Dennison et al., 2011; Devito et al., 2004; Karasavvas et al., 

2008; Matyas et al., 2009; Mohan et al., 2014; Serrano et al., 2014; Yang et al., 2013).  It 

is likely that these peptides associated with the liposomes based on their hydrophobic 

nature.  Of these, only one reported the isolation of a weakly neutralizing monoclonal 

antibody, W320, which binds overlapping the 2F5 epitope (Matyas et al., 2009).  

Alternatively, short MPER peptides have also been chemically conjugated to lipid 

anchors for direct liposomal incorporation (Hanson et al., 2015; Kim et al., 2013; 
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Venditto et al., 2013; Watson et al., 2011; Watson and Szoka, 2009).  Unfortunately, 

these approaches have also failed to generate any neutralizing antibodies.  This suggests 

that short MPER peptides might not be effective despite liposomal delivery.   

Multiple studies have also tested the immunogenicity of MPER in the context of 

the transmembrane domain (Benen et al., 2014; Hulsik et al., 2013; Kamdem Toukam et 

al., 2012; Kim et al., 2013; Lenz et al., 2005).  While some have used antigens that 

contain MPER and TM domains with or without the cytoplasmic tail (CT) (Kamdem 

Toukam et al., 2012; Kim et al., 2013), others have characterized antigens containing 

HR2, MPER and TM domains similar to gp41-54TM but using different delivery systems 

(VLPs or liposomes of different composition) (Benen et al., 2014; Hulsik et al., 2013; 

Lenz et al., 2005).  Of the later studies, Benen et al reported that following a DNA-prime 

VLP-boost strategy, sera from immunized rabbits showed weak neutralizing activity 

against SF162 and MW965.26 (Benen et al., 2014).  Interestingly, another study that 

immunized llamas with gp41-proteoliposomes, reported the generation of a virable 

domain only-single chain antibody that bound overlapping the 2F5 epitope and 

neutralized both Tier1 and Tier 2 viruses (Hulsik et al., 2013).  It is important to note that 

prior to isolation of the single chain antibody by hybridoma generation and extensive 

screening in this study, no neutralizing activity was detected in the whole sera.  Whether 

or not gp41-54TM induced any low levels of neutralizing antibodies remains to be 

determined using similar methods.  However, compared to the studies mentioned above, 

our immunization scheme generated stronger overall antibody response.   

Most importantly, while some of the previous studies elicited antibodies targeting 

the region bound by 2F5 (Dennison et al., 2011; Devito et al., 2004; Huarte et al., 2012; 
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Kamdem Toukam et al., 2012; Matyas et al., 2009; Serrano et al., 2014; Watson et al., 

2011; Watson and Szoka, 2009; Yang et al., 2013; Zhang et al., 2014), our immunogen 

was successful in eliciting immune response against the peptide harboring the 4E10 

epitope.  This is significant since 4E10 has much broader neutralizing ability than 2F5 

(Binley et al., 2004; Huang et al., 2012).  Hence, our results suggest that gp41-54TM 

might be a good starting point for designing the next generation of MPER-based vaccines 

to specifically target the 4E10 epitope.  One potential strategy might be to use gp41-

54TM as a priming antigen along with different boosting antigens that present more 

native structures to better direct antibody maturation to facilitate recognition of the native 

virion.  The effect of factors like liposome size and composition, especially through the 

incorporation of cholesterol to mimic the native membrane (Brügger et al., 2006), can 

also be further explored.  Finally, since gp41-54TM contains only the HR2, MPER and 

TM domains, the ectodomain might mimic a prefusion state.  It is speculated that the 

neutralizing face of the MPER might be better accessible in a fusion intermediate form 

(Chakrabarti et al., 2011; de Rosny et al., 2004; Dimitrov et al., 2007; Finnegan et al., 

2002; Frey et al., 2008; Kim et al., 2011).  In line with this theory, constructs mimicking 

the gp41 fusion intermediate have been reported to induce modest cross-clade 

neutralizing antibodies when delivered on liposomes after covalent linking (Lai et al., 

2014).  This antigen also contained the immunodominant C-C loop. Hence, future 

constructs that present some of our previously described fusion intermediates (that lack 

the immunodominant loop) along with a transmembrane domain might further enhance 

the effectiveness of such vaccine approaches. 
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Materials and Methods: 

Cloning, Expression and Purification of gp41-54TM 

The gp41-54TM fragment was amplified by PCR from Mcon6gp160 (46) using 

sense 5’- GCGCGGATCCGAGTGGGAGCG-3’ and antisense 5’-

GCGCGAATTCTTAATGGTGATGATGGTGATGCTGGCGCACGCGGTTCAC-3’ 

primers.  The amplified product was digested at indicated BamHI and EcoRI sites and 

cloned into pET-21a vector (Novagen; cat#69740-3) using the same sites.  The resulting 

plasmid, following sequence confirmation was designated as pET-gp41-54TM.  For 

expression, E.coli T7 Express IysY/Iq (New England Biolabs; cat#C3013I) was 

transformed with pET-gp41-54TM and cultured overnight at 37 °C in superbroth 

containing ampicillin (50 μg/ml).  Cells were diluted 1:100 in fresh superbroth containing 

ampicillin (100 μg/ml) and grown to 5.0 A600 at 37 °C.  Protein expression was then 

induced using 1mM IPTG (isopropyl-β-D-thiogalactopyranoside).  Cells were harvested 

5 hour post-induction by centrifugation at 15000g rpm for 15 min.  The cell pellet was 

resuspended in 1X PBS (pH 7.4) and lysed by passing once through French Press at 

20000 psi. Lysed cells were collected by centrifugation at 15000g for 20 min. The pellet 

was completely solubilized in 1X PBS (pH 7.4) containing 2% OG (n-octyl-β-D-

glucoside) by sonication.  Following centrifugation at 15000g for 30 min, the supernatant 

was collected, and the detergent solubilized protein was bound to Ni2+-NTA 

(nitrilotriacetic acid) Superflow (Qiagen; cat#30450) by mixing on an end to end shaker 

overnight at 4 °C.  The mixture was loaded onto a column, and resin bound protein was 

denatured by passing at least 10 bed volumes of 6M urea in 1X PBS (pH 8) containing 

1% OG and 20 mM imidazole. The protein was renatured by passing 10 bed volumes of 
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1X PBS (pH 8) containing 0.5% OG, 20 mM imidazole and a decreasing step gradient of 

urea at 4, 2, and 0 M. The protein was eluted with 1X PBS (pH 8) containing 1% OG and 

300 mM of imidazole. The protein was finally dialyzed against a buffer containing 20 

mM HEPES, 20 mM NaCl (pH 8.0), 1% OG and 15% (v/v) glycerol.  

 

Liposome production and characterization 

 For initial characterization, simple liposomes were prepared by dissolving 

phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) (Avanti Polar 

Lipids; cat# 850355P) in chloroform at a final concentration of 10 mg/ml.  After solvent 

evaporation under a stream of nitrogen gas, the sample was lyophilized to remove any 

residual chloroform.  Multilamellar vesicles were generated by resuspending the lipid 

film in 1x PBS (pH 8) at a final concentration of 10 mg/ml.  The lipid suspension was 

then extruded through either 100-nm or 1-μm polycarbonate membrane to generate 

liposomes.  For protein loading, the gp41-54TM was added to the liposomes at a mass 

ratio of 1:50 (protein: lipid) and incubated for 30 min at room temperature with end-to-

end mixing.  The sample was then dialyzed against 1x PBS (pH 8) for 48-72 hours with a 

final dialysis performed using 1x PBS (pH 7.4).  

 Both unloaded and loaded liposomes were analyzed using antibody-based 

immunogold labeling and visualized with a JOEL 2100 transmission electron 

microscope.  3 μl of the diluted liposome sample (1:20 dilution) was applied on a carbon-

coated copper grid.  After 3 min incubation, excess liquid was carefully blotted away.  

Blocking was performed for 30 min by floating the grid on top of 50 μl of blocking 

buffer (0.1% AURION BSA-cTM in 1X PBS, pH 7.4).  The grid was then floated on top 
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of 50 μl of primary antibody solution (made in blocking buffer at 10 μg/ml concentration) 

for 1 hour.  This was followed by 10 min incubation in blocking buffer to remove 

unbound antibodies and blotting away the excess liquid.  Following two more washes, the 

grid was floated on the secondary antibody solution (1:40 dilution in blocking buffer) for 

1 hour.  The grid was washed twice by floating on the blocking buffer for 5 min.  Three 

more similar washes were performed using distilled water.  Following a 30 sec staining 

with 20 μl of 1% uranyl acetate solution, grids were blotted carefully and allowed to dry 

completely before visualization at 20000x magnification.  Different primary antibodies 

used for staining were 2F5(Buchacher et al., 1994; Purtscher et al., 1996; 1994), 

4E10(Stiegler et al., 2001), Z13e1(Nelson et al., 2007; Zwick et al., 2001), 10E8 (Huang 

et al., 2012) and 2C2 (unpublished data).  Anti-human antibody conjugated to 10 nm gold 

was used as a secondary antibody for 2F5, 4E10, Z13e1 and 10E8 while anti-rabbit 

antibody conjugated to 10 nm gold was used as secondary antibody for 2C2. 

 

Rabbit immunization  

Three New Zealand white female rabbits (2.5 to 3 kg) were purchased from 

Charles River (USA), housed under specific pathogen free environments and used in 

compliance with the animal protocol approved by IACUC of Iowa State University.  

Liposomes were prepared as described earlier but with the addition of the adjuvant 

monophosphoryl lipid A (MPLA) to the phosphatidylcholine (PC) solution in 

choloroform.  The amount of MPLA was 100 μg for every 10 mg of PC.  The gp41-

54TM protein was loaded onto pre-formed liposomes as described earlier.  Rabbits were 

immunized subcutaneously on weeks 0, 4 and 11 with 200 μg of protein (along with 10 
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mg of PC and 100 μg of MPLA) per immunization.  Blood was collected pre-

immunization and 2 weeks post-immunization.  Processed sera were stored at -80 °C.    

 

Enzyme-linked immunosorbent assay (ELISA) 

 All ELISAs were performed using the standard protocol described for gp41-

HR1-54Q (Habte et al., 2015) except for the use of an alternate blocking buffer consisting 

of PBS (pH 7.5) with 2.5% skim milk and 5% calf sera.  Briefly, for assays testing 

binding to monoclonal antibodies as well as for serum antibody titers, gp41-54TM was 

coated at 30 ng/well.  All antibodies inlcuding 2F5, 4E10, Z13e1, 10E8 and 2C2, were 

used at an initial concentration of 1 µg/ml followed by three-fold serial dilution.  

Secondary antibody used for 2F5, 4E10, Z13e1 and 10E8 was a goat anti-human, 

horseradish peroxidase (HRP)-conjugated (Thermo Scientific; Cat# 31410) while a goat 

anti-rabbit, horseradish peroxidase (HRP)-conjugated secondary antibody was used for 

2C2 (Thermo Scientific; Cat# 31430).  All secondary antibodies were used at 1:3000 

dilution in the blocking buffer as previously described.  Coating for linear epitope 

mapping using 10-mer biotinylated peptides and 13-mer alanine scanning was also 

performed as previously described (Habte et al., 2015).   

 

Neutralization assays 

Neutralization assays were performed in TZM-bl cells as previously described(Li 

et al., 2005; Qin et al., 2014; Wei et al., 2002).  Viruses tested included SF162 (tier 1A, 

clade B), MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade B). Murine leukemia 

virus Env-pseudotyped virus was used as a negative control.  
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Figures 

 

 

Fig 1: Design and antigenic characterization of gp41-54TM.  (A) A domain structure 

of gp41-54TM consisting of the T7 tag, heptad repeat 2 (HR2), membrane proximal 

external region (MPER), transmembrane (TM) and the 6x His tag is shown along with 

the aligned sequence on top.  (B) The purified protein was run on a tricine-SDS gel to 

check its purity.  (C) ELISA binding of monoclonal antibodies (mAbs) 2F5, 4E10, 

Z13e1, 2C2 and 10E8. 
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Fig 2: Immunogold labeling of gp41-54TM proteoliposomes.  MPER accessibility on 

liposomes was tested by binding to bnAbs 2F5, 4E10, Z13e1 and 10E8 .  All anti-MPER 

bnAbs were able to bind the gp41-54TM loaded liposomes.  Strong binding was also 

observed forand cluster II-binding rabbit mAb 2C2.  Unloaded liposomes (showed no 

binding to 10E8 as indicted in the panels labeled NC) are also shown. 

 

 

Fig 3: Antibody titers.  Sera after each immunization were used to test for binding to 

gp41-54TM.  Pre-immune serum was used as negative control. 
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Fig 4: Mapping of linear immuniogenic epitopes for gp41-54TM immunized rabbits.  

Sera post third immunization was tested for binding against biotinylated 10-mer peptides 

(mixture of both N-terminus and C-terminus biotinylated peptides) spanning both HR2 

and MPER domains.  The amino acid sequence of each peptide is marked by horizontal 

brackets. The core binding epitopes for 2F5, 4E10, and 10E8 bnAbs and 2C2 are 

indicated.  The cluster II region is also highlighted.  Pre-immune serum was used as a 

negative control. 

 

 

Supplementary Fig 1: Immunogold labeling of smaller liposomes.  Smaller liposomes 

generated using a 100 nm polycarbonate filters were loaded with gp41-54TM by 

extensive dialysis and tested for binding to 2F5.  As shown in both panels, little gold 

labeling was observed on each liposome suggesting poor antibody binding. 
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Supplementary Fig 2: Mapping of linear immuniogenic epitopes for gp41-54Q 

immunized rabbits.  Sera (post-third immunization) from 6 rabbits from two different 

experiments were used for epitope mapping using overlapping 10-mer peptides spanning 

the entire gp41-54Q.  A mixture of N-terminus and C-terminus biotinylated peptides 

were used for the assay.  Horizontal brackets represent the sequence of each peptide.  The 

first peptide (MEWEREISNY) and the last peptide (DITNWLWYIK) are marked with an 

asterisk to indicate slight sequence differences from original antigen.  A450 values for 

individual rabbits are represented with purple spheres where as average values are 

indicated with red triangles.  The most immunodominant epitope overlaps with the 

cluster II region.  The binding epitope (KNEQELLALDK) for the non-neutralizing 

antibody 2C2 (isolated from one gp41-54Q immunized rabbit) is indicated along with 

core binding epitopes for anti-MPER bnAbs 2F5 (ALDKWAS), 4E10 (WFDITNWLW) 

and 10E8 (NWFDITNWLWYIK). 
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CHARACTERIZATION OF MPER-TARGETING HYBRIDOMAS GENERATED 

FROM RABBITS USING A NOVEL PRIME-BOOST IMMUNIZATION 
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Abstract 

Broadly neutralizing antibodies elicited against the membrane proximal external 

region (MPER), including 4E10 and 10E8, isolated from infected individuals can 

neutralize up to 98% of all HIV-1 isolates.  Attempts to elicit similar antibodies using 

different MPER-based vaccine strategies have not been successful.  In our continued 

efforts to fully characterize MPER immunogenicity, we have tested novel prime-boost 

immunization strategies.  In a comparative study, rabbits were primed with either soluble 

or membrane bound MPER antigens.  Both groups were then progressively boosted using 

larger immunogens to attempt to direct antibody maturation and facilitate recognition of 

native MPER structure on the virion.  Rabbits primed with the soluble antigen elicited 

strong antibody response against peptides containing the 4E10/10E8 epitopes.  Although 

none of the rabbits demonstrated serum-neutralizing activity, one rabbit was selected for 

hybridoma generation to understand why the elicited response was non-neutralizing.  

Following extensive screening using MPER peptides containing epitopes for 2F5 and 

4E10/10E8, three novel hybridomas named 6C10, 9F6 and 21B5 were identified.  

Detailed epitope mapping of these hybridomas revealed that while 9F6 recognizes the 

peptide overlapping the 4E10 eptiope, 21B5 binding to the MPER requires the 680YIK683 

residues in addition to the upstream 4E10 epitope, similar to the epitope binding 

requirement for 10E8.  The 6C10 hybridoma bound an epitope overlapping but slightly 
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upstream of the 2F5 epitope.  Further characterization of these hybridomas will provide 

valuable information for MPER-based vaccine design. 

 

Introduction 

The human immunodeficiency virus 1 (HIV-1) has evolved multiple strategies to 

evade the immune system.  The virus uses a mixture of low spike density (Klein et al., 

2009; Zhu et al., 2006), variable glycosylation (Binley et al., 2010; Moore et al., 2012), 

transient epitope exposure (Frey et al., 2008), conformational masking (Kwong et al., 

2002), steric occlusion (Labrijn et al., 2003), and non-neutralizing immunodominant 

decoys including non-functional envelope monomer, stumps and uncleaved precursors 

(Moore et al., 2006; Poignard et al., 2003) as means to counter the generation of 

functional antibodies.   

The primary antibody response in infected individuals first comprises of largely 

non-neutralizing antibodies (Tomaras et al., 2008) followed by neutralizing antibodies 

specific against the autologous infecting virus (Deeks et al., 2006; Gray et al., 2007; 

Moog et al., 1997; Richman et al., 2003; Wei et al., 2003).  However, following 2-4 years 

of infection, about 20% of the infected individuals elicit high levels of antibodies that can 

neutralize multiple strains of HIV-1 (Binley et al., 2008; Dhillon et al., 2007; Gray et al., 

2007; 2011; Hraber et al., 2014; Y. Li et al., 2009), and about 1% of the infected patients 

can neutralize hundreds of viral quasi-species from multiple HIV-1 clades (Simek et al., 

2009).  These broadly neutralizing antibodies (bnAbs) target a few select conserved sites 

of vulnerability on the virus, either by blocking receptor/coreceptor binding or by 



   

  

113

preventing the envelope protein from undergoing conformational changes critical for 

virus fusion to the host cells.   

The ability of these antibodies to confer protection following passive 

immunization (Balazs et al., 2012; Ferrantelli et al., 2003; Hessell et al., 2009; Mascola et 

al., 2000; Shibata et al., 1999) has triggered the search for a vaccine capable of inducing 

similar antibodies in animal models.  These vaccine efforts typically focus on two major 

epitopes targeted by some of the broadest bnAbs isolated so far.  Several gp120-based 

vaccine strategies have been evaluated to target the CD4 receptor-binding site (reviewed 

in (Georgiev et al., 2013)).  These efforts have been complicated due to the highly 

conformational nature of this epitope along with the presence of immunodominant 

epitopes and heavy glycan shield on the gp120 subunit (Pantophlet and Burton, 2006; 

Sodroski et al., 1998; Wei et al., 2003).  Another epitope of interest has been the 

membrane proximal external region (MPER), which represents a stretch of ~22 amino 

acid long, highly conserved domain in the gp41 subunit.  This region is targeted by 

multiple patient-isolated bnAbs including 2F5, Z13e1, 4E10 and 10E8 (Huang et al., 

2012; Kwong et al., 2013; Purtscher et al., 1994; Stiegler et al., 2001; van Gils and 

Sanders, 2013; Zwick et al., 2001).  The last two bnAbs demonstrate neutralization 

against about 98% of the HIV-1 isolates (Huang et al., 2012).   

The elicitation of similar MPER targeting bnAbs through vaccination is one of 

the major goals in the field of HIV-1 vaccine development. However, identifying the 

optimal MPER conformation that can bind germline B-cells and trigger bnAbs generation 

has been difficult due to multiple reasons.  First, the MPER resides in the highly dynamic 

gp41 subunit that undergoes multiple structural changes to mediate virus fusion to the 
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host cell (Melikyan, 2008).  It is likely that MPER accessibility varies to a great extent 

during the pre-fusion, the fusion intermediate and the post-fusion states of gp41.  

Furthermore, the MPER conformation might also be influenced by the availability and 

conformation of neighboring domains.  These issues might be responsible for the failure 

of small MPER peptide-based vaccines (Decroix et al., 2001; Joyce, 2002; Liao et al., 

2000; Matoba et al., 2006; McGaughey et al., 2003; Ni et al., 2004).  While multiple 

structural studies defining MPER structure bound to bnAbs reveal critical information 

about the binding face that needs to be targeted (Cardoso et al., 2007; Julien et al., 2008; 

Ofek et al., 2004), these conformations might not represent the native structure which 

interacts with the germline or precursor antibodies involved in the maturation process.  

This is evident by the failure of scaffold-based MPER epitope presentation to generate 

bnAbs (Correia et al., 2010; Guenaga et al., 2011; Ofek et al., 2010a).  Chimeric virus 

based MPER approaches have typically induced poor anti-MPER antibody responses, 

probably due to presence of other immunodominant epitopes outside the MPER domain 

(Arnold et al., 2009; Eckhart et al., 1996; Kusov et al., 2007; Luo et al., 2006; Marusic et 

al., 2001; Ye et al., 2011; Zhang et al., 2004).  Other approaches involving presentation 

of MPER in hybrid/fusion proteins (Coëffier et al., 2000; Hinz et al., 2009; Krebs et al., 

2014; Law et al., 2007; Liang et al., 1999; Mantis et al., 2001; Strasz et al., 2014), virus 

like particles (Benen et al., 2014; Bomsel et al., 2011; Jain et al., 2010; Kamdem Toukam 

et al., 2012; Kim et al., 2014) and MPER liposomal delivery (Dennison et al., 2011; 

Hanson et al., 2015; Hulsik et al., 2013; Lai et al., 2014; Matyas et al., 2009; Mohan et 

al., 2014; Serrano et al., 2014; Venditto et al., 2013; 2014) have also failed, likely from 

the inability to present the MPER in the presence of other poorly defined structural 
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elements necessary to mimic the native conformation.  Finally, an additional hurdle in 

generation of anti-HIV-1 bnAbs is that the germline B-cell has to undergo extensive 

somatic hypermutation, typically in an environment that has high antigenic heterogeneity.  

The necessity to replicate this extended period of antibody maturation in a vaccination 

setting needs to be determined.  Regardless, a handful of animal studies reported the 

elicitation of weak to modest neutralizing antibodies using MPER-based vaccines (Hulsik 

et al., 2013; Krebs et al., 2014; Lai et al., 2014; Ye et al., 2011; Yi et al., 2013).  Hence, 

there is a need to improve the neutralizing breadth and potency of vaccine induced 

antibodies as well as to characterize MPER immunogenicity in context of different gp41 

structures. 

In this study we have tested and compared two novel prime boost strategies for 

inducing MPER-targeting neutralizing antibodies.  It was hypothesized that while smaller 

priming antigens might be better to focus the antibody response towards MPER, the use 

of progressively larger antigens for boosting might allow antibodies to mature in a 

manner so that they can recognized MPER on the surface of the native virion.  Two 

different antigens, one soluble (group 1) and one membrane bound (group 2), were used 

for priming.  All animals were then subjected to subsequent immunizations with different 

combinations of protein, DNA and recombinant vaccinia virus boost.  The detailed 

antibody response was characterized at the polyclonal level following each 

immunization.  One of the animals was further used for hybridoma generation and 

characterization of the antibody response at the monoclonal level. 
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Results 

Prime-boost immunization using a membrane-bound priming antigen 

We had previously demonstrated that gp41-54TM proteoliposomes induced 

antibodies against the peptide containing the 4E10 epitope (Chapter 3).  In this study, 

three rabbits were primed using similar gp41-54TM proteoliposomes (Fig. 1A).  The 

rabbits were then boosted four weeks later using a combination of proteoliposomes and a 

54CT DNA vaccine that codes for a highly similar but larger protein containing the same 

HR2 and MPER domains, but also containing the additional cytoplasmic tail (CT) as in 

the native virus gp41 protein.  For the third boost, rabbits were immunized using a 

combination of 54CT DNA and recombinant vaccinia virus expressing gp160 (rVV-

gp160).  A final fourth boost was performed using gp41-54TM and rVV-gp160.  Serum 

was collected two weeks after each immunization, and antibody titers against gp41-54TM 

were analyzed using ELISA (Fig. 1B).   

All three rabbits showed slightly different antibody response following each 

immunization.  Antibody titer for rabbit R1 (in green) reached between 103 and 104 after 

the first immunization and was continuously boosted following subsequent 

immunizations, reaching more than 106 after the fourth immmunization.  For rabbit R2 

(in yellow), the response after the first immunization was the strongest among all these 

rabbits, and titers reached as high as 105 after the second immunization.  However, titers 

dropped following the third immunization and remained at slightly above 104 even after 

the fourth immunization.  Antibody titers for rabbit R3 (in blue) reached between 105 and 

106 after the second immunization and did not show further increase after the third and 

fourth immunizations.   
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To map the linear epitopes targeted across the gp41 ectodomain, sera after each 

immunization was also analyzed using overlapping, 10-mer biotinylated peptides that 

spanned HR2 and MPER domains.  As shown in Fig. 2, following priming with gp41-

54TM, antibodies were raised against multiple peptides in the HR2 domain, but little 

response was detected against peptides spanning the MPER domain.  For all three rabbits, 

while there was slight difference in the exact peptides targeted, antibodies were raised 

against the N-terminus (peptides 629, 632, 635, 638, 641) and C-terminus (peptides 653, 

656, 659) ends of HR2.  Rabbit R2 (in yellow) elicited some antibodies against the 

659ELLALDKWAS668 peptide containing the 2F5 epitope.   

Following the first boost with gp41-54TM proteoliposomes and 54CT DNA, the 

response against the HR2 domain was further enhanced for rabbit R3 (in blue) and 

included additional peptides in the HR2 central region (peptides 641, 644, 647, 650, 653).  

Rabbit R3 also showed weak response against all MPER spanning peptides (peptides 

662, 665, 668, 671, 674).  Antibody response to different linear epitopes remained 

unchanged for rabbit R2.  Interestingly, little to no linear epitopes were bound by sera 

from rabbit R1.  Since this rabbit still showed increase in overall antibody response 

against gp41-54TM, it is possible that antibodies were elicited against conformational 

epitopes that could not be detected using overlapping peptide ELISA.  After the third 

immunization with 54CT DNA and rVV-gp160, there was an overall decrease in linear 

epitopes targeted across HR2 and MPER domains.  Once again, it is possible that the 

antibodies elicited by the rabbits at this point bound conformational epitopes or epitopes 

on gp160 that are outside the HR2 and MPER.  Alternately, epitopes presented by gp41-

54TM might not be accessible on rVV-gp160.  Following the fourth immunization using 
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gp41-54TM and rVV-gp160, the antibody binding was enhanced considerably towards 

cluster II region peptides 653 and 659 for rabbit R3.  Rabbit R1 also showed increased 

binding for peptide 653, while there was no significant binding increase for any peptides 

in case of rabbit R2.  Overall, these results demonstrate that this prime boost strategy 

(group 1) was unable to induce antibodies against the linear peptides that span the MPER 

domain.  Additionally, all rabbits failed to demonstrate serum neutralizing activity (data 

not shown). 

   

Prime-boost immunization using a soluble priming antigen. 

Next, three new rabbits were immunized and bled similar to the protocol used for 

the gp41-54TM based prime-boost strategy described above but with slight changes (Fig. 

3).  Most importantly, the gp41-54TM antigen was replaced with a soluble antigen, 

named MPER28x3, which consists of three tandem repeats of MPER28 (representing 6 

residues from the HR2 domain and the 22 MPER residues).  As shown in Fig. 3, 

following the first immunization with MPER28x3, antibody titers reached 103 or slightly 

above for all three rabbits.  Titers were increased by about 100-fold for all rabbits after 

the second immunization with MPER28x3 and 54CT DNA.  The subsequent boost with 

54CT DNA and rVV-gp160 did not enhance the antibody response any further for rabbits 

R1 (in green) and R2 (in yellow), while rabbit R3 (in blue) showed slight increase.  

Overall titers remained between 105 and 106 for all three rabbits.  Following the fourth 

boost, antibody titers reached almost 106 for rabbits R1 and R3 while titers for rabbit R2 

remained the same. 
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Linear epitope mapping using overlapping, 10-mer biotinylated peptides were 

then performed with sera following each immunization (Fig. 4).  Strangely, little to no 

response was observed against any linear peptides after the first immunization.  However, 

strong antibody response was detected against the cluster II immunodominant region 

(peptides 650, 653, 656) following the second immunization with MPER28x3 and 54CT 

DNA.  Little response was also seen against the MPER peptide 668SLWNWFDITN677 for 

rabbit R3.  After the third immunization with 54CT DNA and rVV-gp160, while the 

cluster II region still remained immunodominant, some antibody response could be 

detected against other linear epitopes.  Rabbit R2 showed good binding to peptide 

662ALDKWASLWN671 that contains the 2F5 epitope.  In addition to peptide 

668SLWNWFDITN677, rabbit R3 also bound peptide 671NWFDITNWLW680 that contains 

the 4E10 epitope.  Rabbit R1 and R2 also recognized additional HR2 domain peptides 

upstream of the cluster II region.  THeourth immunization with MPER28x3 and rVV-

gp160 further enhanced anti-MPER antibodies in rabbits R2 and R3.  Binding was seen 

against peptides 668SLWNWFDITN677 and 671NWFDITNWLW680 in rabbit R3 and 

peptides 671NWFDITNWLW680 and 674DITNWLWYIK683 in rabbit R2.   

Overall, despite the strong response against the cluster II immunodominant 

region, this prime boost strategy (group 2) was successful in inducing antibodies against 

the linear peptides covering the C-terminus end of MPER that contains the 4E10 and 

10E8 epitopes.  Unfortunately, sera from these rabbits did not exhibit neutralizing activity 

(data not shown).  It is possible that MPER-binding antibodies failed to neutralize due to 

their inability to access the MPER on the native virus.  Alternately, it is also possible that 

the quantity of neutralizing antibodies was too low in the serum to be detected by our 
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neutralization assay.  To explore these possibilities at a monoclonal level, rabbits R2 and 

R3 were further used for hybridoma generation.  

   

Generation of hybridoma and epitope mapping using ELISA 

Rabbits R2 and R3 from group 2 were injected intravenously with 200 μg of 

MPER28x3 antigen in PBS without any adjuvant at week 35 (Fig. 3A), and sacrificed 

four days later to harvest the spleen.  Spleen from rabbit R2 was frozen for future use, 

while spleen from rabbit R3 was used for hybridoma generation. Fusion was performed 

for fourteen 96-well plates, and viable hybridomas post-HAT selection (about over 70% 

of the total) were screened against the MPER28x3 immunogen.  Since the vast majority 

of the hybridoma supernatants showed detectable signal (over 95%), they were further 

tested for binding to 15-mer peptides containing epitopes for 2F5 

(657EQELLALDKWASLWN671) and 4E10/10E8 (669LWNWFDITNWLWYIK683).  15-

mer peptides were chosen preferentially over 10-mer peptides because they could contain 

longer epitopes, especially the entire 10E8 epitope.  Based on strong binding to either of 

these peptides, three hybridomas (6C10, 9F6 and 21B5) were selected for further 

characterization.   

To map the binding epitope for all three hybridomas, peptide ELISAs were 

performed using overlapping 15-mer peptides.  As shown in Fig. 5A, the 6C10 

hybridoma showed strong binding to peptides 649SQNQQEKNEQELLAL663, 

653QEKNEQELLALDKWA667 and 657EQELLALDKWASLWN671 suggesting that the 

common residues between these peptides (underlined) was the core binding epitope.  In 

agreement with this, peptides 645LIEESQNQQEKNEQE659 (upstream) and 
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661LALDKWASLWNWFDI675 (downstream) that lacked the complete 657EQELLAL663 

epitope could not be bound by 6C10.  Hence, while 6C10 was identified after screening 

with 657EQELLALDKWASLWN671 peptide, these results indicated that it binds slightly 

upstream of and partially overlaps with 2F5 epitope (662ALDKWAS668) also present in 

the same peptide.  However, 6C10 does not bind any of the critical residues (664DKW666) 

reported for 2F5 binding (Ofek et al., 2004).  Thus, 6C10 binds the junction between 

MPER and cluster II region.  Interestingly, we have previously isolated another anti-

cluster II, non-neutralizing monoclonal antibody from rabbits immunized with gp41-54Q.  

This antibody, named 2C2, recognizes the 655KNEQELLALDK665 epitope with the 

critical residues underlined (unpublished data).  Since 6C10 does not require the 665K 

residue for binding, its binding mechanism to this region might be different from 2C2.     

Next, binding analyses were performed for both 9F6 and 21B5 hybridomas that 

were originally screened using the 669LWNWFDITNWLWYIK683 peptide containing the 

complete epitope for both 4E10 and 10E8 bnAbs.  Interestingly, both 9F6 and 21B5 

failed to bind overlapping peptides upstream (665KWASLWNWFDITNWL679) and 

downstream (673FDITNWLWYIKFIM686) of the peptide used for the original screening 

experiment. This suggested that the binding epitope of these hybridomas is completely 

contained within the 669LWNWFDITNWLWYIK683 peptide.  Interestingly, binding 

analysis with a mixture of the N-terminus and C-terminus biotinylated 10-mer peptide 

671NWFDITNWLW680 revealed a major difference between 9F6 and 21B5 binding.  9F6 

showed strong recognition of this 10-mer peptide, thus indicating that the binding epitope 

was completely contained in the peptide and overlapped completely with the 4E10 

epitope sequence.  In contrast, 21B5 failed to bind the 10-mer peptide.  These results 
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suggested that 21B5 requires the additional residues 681YIK683 for binding, similar to that 

of 10E8 binding (Huang et al., 2012).  

 

Detailed epitope mapping of 9F6 hybridoma 

Both 4E10 and 10E8 bind the neutralizing face of MPER.  To further define the 

MPER peptide face bound by 9F6 and 21B5, alanine scanning analysis was performed 

using the C-terminus biotinylated, 13-mer peptide (671NWFDITNWLWYIK683) as 

described in our previous study (Habte et al., 2015).  Interestingly, while 21B5 could bind 

the unbiotinylated 13-mer 671 peptide, it failed to bind the C-terminus biotinylated form 

of this peptide (data not shown).  This difference might be due to two reasons.  First, 

since the terminal 683K was biotinylated, it might affect binding directly, suggesting that 

this residue is critical.  Second, even if the 683K residue is not critical for 21B5 binding, 

the 13-mer peptide would be bound to streptavidin plates using terminal K683, thereby 

limiting the accessibility of other binding residues (within 680YIK683) at the C-terminus 

end.  In our experience, the use of biotinylated peptides offers higher sensitivity than 

unbiotinylated peptides in alanine scanning assays.  Hence, alanine scanning analysis for 

21B5 must be performed using longer biotinylated peptides or N-terminus biotinylated 

peptides. 

Unlike 21B5, 9F6 showed good binding to the 13-mer 671 peptide biotinylated at 

the C-terminus end (Fig. 6A) and hence was used for further binding analysis using 

alanine mutant peptides (Fig, 6B).  Previously, our 4E10 binding analyses (Habte et al., 

2015) revealed critical binding including residues W672, F673, I675, T676 and L679, 

similar to that reported by others (Brunel et al., 2006).  The effect of N671A and D674A 
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has been suggested to be primarily due to disruption of peptide structure (Brunel et al., 

2006).  In comparison, 9F6 hybridoma binding was severely affected by W672A, F673A, 

N677A and to a lesser extent by T676A and W680A.  Thus, 9F6 binding to the 

671NWFDITNWLW680 epitope involves three residues (W672, F673, and T676) that are 

also critical for 4E10 binding.  Alanine mutations at these residues decrease 4E10 binding 

by over a 1000-fold (Brunel et al., 2006).  Interestingly, unlike 4E10, alanine mutations at 

I675 and L679 did not affect 9F6 binding at all.  Also, 9F6 binding involved other 

residues including N677 and W680 that are not necessary for 4E10 binding.  However, 

the W680 residue has been shown to be important for neutralization by 4E10 (Brunel et 

al., 2006; Zwick et al., 2005) and hence considered part of the 4E10 epitope.  Thus, as 

revealed by our assay, the binding epitopes for 9F6 (671NWFDITNWLW680) and 4E10 

(672WFDITNWLW680) contain remarkable similarities.  To further visualize and compare 

the binding of 9F6 and 4E10, the critical binding residues were mapped onto the MPER 

peptide that was co-crystallized with 4E10 (Cardoso et al., 2005).  As shown in Fig. 7A 

and 7B, 9F6 shared a significant overlap with the 4E10 binding face.  However, 9F6 

binding was slightly offset to include residue N677, whereas 4E10 binding involved 

residues I675 and L679.   

 

Discussion 

The antigenic environment in HIV-1 infected patients is quite complex.  Besides 

the variability in envelope sequence and glycosylation patterns, the virus also presents 

non-functional spikes, and critical neutralizing epitopes on functional spikes are only 

exposed transiently following receptor and co-receptor binding.  It is hard to identify 



   

  

124

which component(s) of this antigenic cocktail are important for the development of 

bnAbs.  In comparison, vaccines traditionally contain a single, well-defined immunogen.  

For HIV-1 vaccines, while small subunit immunogens induce strong antibody response, 

they might not be able to mimic the correct conformation in the absence of other 

domains.  Furthermore, antibodies elicited towards such subunit immunogens might not 

be able to access the same epitopes on the whole virus where epitope accessibility might 

be obscured due to other structural components.  Alternately, larger, conformationally 

correct envelope spike-based vaccines like virus like particles might provide too many 

epitopes, which might be immunodominant and distract antibodies from being elicited 

towards subdominant neutralizing epitopes.  Hence in this study, a more complex 

vaccination approach combining both smaller and larger antigens was employed.  Rabbits 

were primed with smaller antigens to first focus the antibody response against the MPER.  

Two different priming immunogens were used:  one membrane bound and one soluble.  

Rabbits were then immunized with sequentially larger immunogens in subsequent 

immunizations, but in combination with the smaller immunogen used for the previous 

immunization. 

  For the first group using the membrane bound gp41-54TM as the priming 

antigen, the prime-boost strategy failed to elicit antibodies against the MPER domain.  As 

shown in our previous study (Chapter 3), gp41-54TM alone elicited antibodies against 

the peptide containing the 4E10 epitope, albeit after three immunizations.  It is possible 

that the combination of this antigen with other boosting antigens diverted the antibody 

response away from the MPER domain. In comparison, two of three rabbits primed with 

the soluble MPER28x3 generated MPER-targeting antibodies after the prime-boost 
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strategy.  However, the bulk of the immune response was still directed primarily against 

the cluster II non-neutralizing epitope, which might be a drawback of this immunization 

strategy.  Furthermore, anti-MPER antibodies were truly boosted only after the fourth 

immunization.  Immunization with MPER28x3 alone can also induce similar antibodies 

against the MPER as well as the cluster II region (unpublished data).  However, the 

quality of MPER targeting antibodies might differ between the two experiments in terms 

of exact binding epitopes and affinities for both the vaccine immunogen and the native 

virion.  Regardless, immunization with MPER28x3 alone (unpublished data) or with the 

prime-boost strategy tested in this study failed to exhibit any detectable neutralizing 

activity in the sera. 

 To understand why gp41-based antigens fail to elicit bnAbs, we previously 

evaluated sera binding to the MPER using alanine-scanning analysis of the 4E10 and 

10E8 peptide.  While this approach has provided valuable insights into the overall 

humoral response against MPER, individual antibody binding patterns to certain residues 

can remain hidden because of the presence of complementary binding patterns exhibited 

by other abundant antibodies.  To overcome this issue, we analyzed the antibody 

response at the monoclonal level by generating hybridomas from rabbit R3 from the 

MPER28x3 group (group 2).  Following fusion, hybridomas were screened using specific 

peptides of interest rather than the entire immunogen.  This approach allowed us to 

directly identify hybridomas specific to peptides containing the 2F5 and 4E10/10E8 

epitopes.  

First, using ELISA-based binding analysis, the core binding epitope for the 6C10 

hybridoma was defined as 657EQELLAL663.  This epitope lies slightly upstream and 
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partially overlaps with the 2F5 binding epitope (662ALDKWAS668).  Interestingly, our 

previously isolated, non-neutralizing 2C2 rabbit monoclonal antibody also overlaps this 

epitope (655KNEQELLALDK665).  However, neither 6C10 nor 2C2 recognize the critical 

residues for 2F5 binding.  One study described the isolation of a modestly neutralizing 

rabbit monoclonal antibody, named WR320, that binds a slightly larger epitope 

(661LELDKWASL669) overlapping the cluster II and MPER regions (Matyas et al., 2009).  

In another report, a variable domain of a single heavy chain (VHH), named 2H10, was 

isolated from llamas and its binding mapped to 657EQELLELDK665 (critical residues 

underlined) (Hulsik et al., 2013).  2H10 further demonstrated modest cross clade 

neutralization in its bivalent form.  Both of these studies reported neutralizing activity 

only after isolation of monoclonal antibodies following hybridoma generation, suggesting 

that the level of such antibodies in whole serum was probably too low.  Future 

experiments performed with the cloned 6C10 antibody will be necessary to map the fine 

binding specificities and evaluate its neutralizing ability. 

Next, two other hybridomas, named 9F6 and 21B5, were isolated using the 15-

mer peptide containing both the 4E10 and 10E8 epitopes.  Binding analysis revealed that 

the 21B5 hybridoma binding epitope included the complete 671NWFDITNWLWYIK683 

epitope, and the presence of 681YIK683 is critical for binding, similar to the broad and 

highly potent human monoclonal antibody 10E8.  Failure to bind the C-terminus 

biotinylated 13-mer peptide further confirmed the importance of this region to 21B5 

binding.   Unfortunately, this also prevented the fine mapping of the residues using our 

current alanine scanning peptides.  Performing future binding studies using longer 

peptides or N-terminus biotinylated peptides might circumvent this.  In comparison, the 
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core binding epitope for the 9F6 hybridoma was defined as 671NWFDITNWLW680, which 

also contains the complete 4E10 epitope sequence.  In comparison, only one other study 

has reported the isolation of a non-neutralizing antibody WR316 (668SLWNWF673) that 

partially overlaps the 4E10 epitope (Matyas et al., 2009).  Fine mapping of the 9F6 

binding epitope revealed a substantial overlap with the 4E10 binding face, involving 

residues W672, F673, T676, and W680.  However, 9F6 binding is slightly offset due to 

the inclusion of N677 residue instead of I675 and L679 that are involved in 4E10 

binding.  Whether or not this difference is enough to prevent virus neutralization needs to 

be further evaluated using the cloned 9F6 antibody.  Since 4E10 exhibits some cross-

reactivity (Alam et al., 2008; Haynes et al., 2005), lipid-binding tests should also be 

performed to determine whether 9F6 demonstrates similar properties.  

Finally, it is important to acknowledge that while these hybridomas show good 

overlap with binding epitopes for well-characterized bnAbs, they might not neutralize the 

virus due to steric occlusion by the bulky gp120 subunit that sits atop the gp41 subunit.  

To overcome this challenge, anti-MPER bnAbs have evolved with special features like 

long heavy chain CDR3s along with hydrophobic patches at the tip necessary for lipid 

interactions (Huang et al., 2012; Ofek et al., 2010b; Sun et al., 2008). These antibodies 

undergo extensive somatic hypermutation to develop such special characteristics.  

Whether or not our hybridomas contain antibodies with similar characteristics and 

neutralizing ability requires to be tested in future.  Regardless, to our knowledge, the 

results discussed in this study are the closest reports about eliciting vaccine-induced 

antibodies that share similar binding characteristics as two of the broadest, patient-

isolated, neutralizing antibodies:  4E10 and 10E8.  Future structural and functional 
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characterization of these hybridomas will provide valuable insights for HIV-1 vaccine 

development. 

 

Materials and Methods: 

Rabbit immunization 

Six New Zealand white female rabbits (2.5 to 3 kg) were purchased from Charles 

River (USA), housed under specific pathogen free, BSL-1 (pre-vaccinia immunization) 

and BSL-3 (post-vaccinia immunization) environments. All animals were tested in 

compliance with the animal protocol approved by IACUC of Iowa State University.  The 

rabbits were divided into two groups of three rabbits each.  Rabbits were in both groups 

were immunized on weeks 0, 4, 11 and 29.   

For group 1 (Fig. 1A), rabbits were primed by subcutaneously injecting 200 µg of 

gp41-54TM on DPPC liposome with MPLA adjuvant as described (Chapter 3).  For the 

second immunization, rabbits were injected subcutaneously with 50 µg of gp41-

54TM/liposome.  Rabbits were also injected intradermally with 200 µg of gp41-54CT 

DNA, followed by electroporation using the AgilePulse In Vivo System (BTX, Harvard 

Apparatus).  The gp41-54CT DNA was derived from pcDNA-MCON6gp160 (kindly 

provided by Dr. Beatrice Hahn (Gao et al., 2005)) and designed to code for the HR2, 

MPER, TM and CT domains (details to be described elsewhere).  For the third 

immunization, rabbits were injected with 200 µg of gp41-54CT DNA as described above 

and with rVV-gp160 (1x108 PFUs) through intradermal injection.  The recombinant 

vaccinia virus expressing gp160 from the DH12 HIV-1 isolate was propagated and 

purified as described previously (Cho et al., 2001; 1998).  For the fourth immunization, 
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both 50 µg of gp41-54TM and rVV-gp160 were administered as described above.  Blood 

was collected pre-immunization and two weeks post-immunizations.  Processed sera 

were stored at -80 °C.  

For group 2 (Fig. 3A), rabbits were primed by subcutaneously injecting 200 µg of 

MPER28x3 with the zinc-chitosan adjuvant as previously described for other antigens 

(Habte et al., 2015; Qin et al., 2014).  The MPER28x3 construct coded for three tandem 

repeats of the 28 amino acids from the gp41 ectodomain (details to be described 

elsewhere).  Each 28 amino acid long repeat consists of 6 residues from the HR2 domain 

and 22 MPER residues.  The protein was expressed in E.coli, refolded and purified as 

previously described (Habte et al., 2015).  All subsequent immunizations were performed 

as that of group 1 rabbits except that the second gp41-54TM immunization was replaced 

with MPER28x3.  Blood was collected, processed and stored as above.    

 

Hybridoma generation 

Rabbits R2 and R3 from group 2 were injected intravenously using 200 µg of 

soluble MPER28x3 in 1x PBS without any adjuvant on week 35.  Four days later, the 

spleen was harvested.  Spleen for Rabbit R3 was used for fusion as described previously 

with minor modifications (Qin et al., 2015; Spieker-Polet et al., 1995).  Briefly, rabbit 

splenocytes were fused with fusion partner cell line 240E-1 (kindly provided by Dr. 

Katherine L. Knight (Spieker-polet 1995)) at a ratio of 2:1 with 50% PEG 1500 (Sigma-

aldrich P7181) and selected by growing in HAT (hypoxanthine, aminopterin and 

thymidine) media (Sigma-aldrich H0262).  Supernatants collected from the hybridomas 
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were then tested initially for specific binding to MPER28x3, and subsequently screened 

by testing binding against MPER peptides of interest as described below. 

 

Enzyme-linked immunosorbent assay (ELISA) 

All ELISAs were performed using the standard protocol described earlier (Habte 

2015), except for the use of an alternate blocking buffer containing 2.5% milk and 5% 

calf sera in 1X PBS (pH 7.5).    For ELISAs testing sera antibody titers, the coating 

antigens (30 ng/well) used for group 1 and group 2 animals were gp41-54TM and 

MPER28x3.  The end-point ELISA titers were defined as serum dilution factor that gave 

readings of average + 2x SD of the background as described previously (Qin et al., 2014).  

Linear epitope mapping for sera was performed using the mixture of N- and C-terminus 

biotinylated 10-mer peptides (Habte et al., 2015).   

For screening hybridomas, HIV-1 consensus group M Env (15-mer) peptides 

from the NIH AIDS Reagent Program (Cat# 9487) were used as binding antigens.  

Peptide 9136 (657EQELLALDKWASLWN671) containing the 2F5 epitope and peptide 

9139 (669LWNWFDITNWLWYIK683) were coated at 100 ng/well using standard ELISA 

protocol.  100 µl of the hybridoma supernatant was directly added to each well and 

incubated for 2 hrs prior to continuing.  Similar binding analysis was performed for 

hybridoma epitope mapping using upstream and downstream peptides (Fig. 5) from the 

same peptide set.  Alanine scanning analysis of the 9F6 binding epitope was also 

performed using the 13-mer 671 peptide (671NWFDITNWLWYIK683) as previously 

described (Habte et al., 2015), but the hybridoma supernatant was diluted 1:2 with 

blocking buffer to prevent signal saturation.  For all ELISAs testing hybridoma binding, 
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goat anti-rabbit, horseradish peroxidase (HRP)-conjugated antibody (Thermo Scientific; 

Cat# 31430) was used as secondary antibody.   

 

Neutralization assays 

Neutralization assays were performed in TZM-bl cells as previously described 

(M. Li et al., 2005; Qin et al., 2014; Wei et al., 2002).  Viruses tested included SF162 

(tier 1A, clade B), MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade B). Murine 

leukemia virus Env-pseudotyped virus was used as a negative control.  
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Figures 

 

 

Fig 1: Prime-boost strategy using the membrane bound gp41-54TM primogen. (A) 

Immunization protocol for group 1 rabbits that were immunized on weeks 0, 4, 11 and 29 

and bled pre-immunization and two weeks post every immunization.  (B) Antibody 

endpoint titers were determined after each immunization by performing ELISA against 

gp41-54TM.  Pre-immune sera were used as negative controls. 
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Fig 2: Linear epitope mapping for rabbits primed with gp41-54TM.  Sera collected 

two weeks after first (A1), second (A2), third (A3) and fourth (A4) immunization was 

tested for binding to a mixture of N- and C-terminus biotinylated peptides spanning both 

HR2 and MPER domains of gp41.  Pre-immune serum was used as negative control.  

Horizontal brackets on top indicate the sequence for each peptide and the core epitopes 

for bnAbs 2F5, 4E10 and 10E8 is shown. 
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Fig 3: Prime-boost strategy using soluble MPER28x3 primogen.  (A) Immunization 

protocol for group 2 rabbits that were immunized on weeks 0, 4, 11 and 29 and bled pre-

immunization and two weeks post every immunization.  Rabbit R2 and R3 were also 

boosted intravenously with MPER28x3 and sacrificed 4 days later to harvest the spleen 

for hybridoma generation.  (B) Antibody endpoint titers were determined after each 

immunization by performing ELISA against MPER28x3.  Pre-immune sera were used as 

negative controls. 
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Fig 4: Linear epitope mapping for rabbits primed with MPER28x3.  Sera collected 

two weeks after first (A1), second (A2), third (A3) and fourth (A4) immunization was 

tested for binding to a mixture of N- and C-terminus biotinylated peptides spanning both 

HR2 and MPER domains of gp41.  Pre-immune serum was used as negative control.  

Horizontal brackets on top indicate the sequence for each peptide and core-binding 

epitopes for bnAbs 2F5, 4E10 and 10E8 is shown. 
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Fig 5: Hybridoma epitope mapping.   Three different hybridomas, (A) 6C10, (B) 9F6 

and (C) 21B5 were tested for binding with overlapping peptides to determine their 

binding epitope.  Binding was also tested against shorter 10-mer peptide (mixture of both 

N- and C-terminus biotinylated peptides) for both 9F6 and 21B5 hybridomas.  Peptide 

sequences for all peptides tested are aligned.  Peptides showing positive binding signals 

are represented in red, and common epitopes between positive peptides are highlighted in 

red. 
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Fig 6: PepScan analysis of 9F6 epitope.   Binding of the 9F6 hybridoma was tested 

against  (A) wild type, C-terminus biotinylated 13-mer peptide (sequence indicated) and  

(B) mutant peptides containing alanine residues at different positions.  The percentage 

binding relative to wild type peptide is plotted.  As a positive control, 4E10 binding was 

also tested previously (Habte et al., 2015) and has been re-plotted here for reference.  
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Fig 7: Structural comparison of critical residues targeted by 9F6 and 4E10.  The 

critical residues identified from PepScan analysis for both 9F6 and 4E10 were plotted 

onto the co-crystal structure of a peptide bound to 4E10 (pdb: 2FX7)(Cardoso et al., 

2007). (A) Top view showing the arrangement of different binding residues and the 

relative position of the non-neutralizing face of MPER.  Critical binding residues shared 

by 9F6 and 4E10 are shown in green while unique binding residues for 9F6 and 4E10 are 

shown in red and green respectively.  Significant overlap is observed in the binding of 

9F6 and 4E10.  (B) Lateral view of the peptide displaying critical binding residues for 

9F6 and 4E10. 

 

 

References 

 

Alam, S.M., Scearce, R.M., Parks, R.J., Plonk, K., Plonk, S.G., Sutherland, L.L., Gorny, 

M.K., Zolla-Pazner, S., Vanleeuwen, S., Moody, M.A., Xia, S.-M., Montefiori, D.C., 

Tomaras, G.D., Weinhold, K.J., Karim, S.A., Hicks, C.B., Liao, H.-X., Robinson, J., 

Shaw, G.M., Haynes, B.F., 2008. Human immunodeficiency virus type 1 gp41 

antibodies that mask membrane proximal region epitopes: antibody binding kinetics, 

induction, and potential for regulation in acute infection. J Virol 82, 115–125. 

doi:10.1128/JVI.00927-07 

Arnold, G.F., Velasco, P.K., Holmes, A.K., Wrin, T., Geisler, S.C., Phung, P., Tian, Y., 

Resnick, D.A., Ma, X., Mariano, T.M., Petropoulos, C.J., Taylor, J.W., Katinger, H., 

Arnold, E., 2009. Broad Neutralization of Human Immunodeficiency Virus Type 1 

(HIV-1) Elicited from Human Rhinoviruses That Display the HIV-1 gp41 ELDKWA 

Epitope. J Virol 83, 5087–5100. doi:10.1128/JVI.00184-09 

Balazs, A.B., Chen, J., Hong, C.M., Rao, D.S., Yang, L., Baltimore, D., 2012. Antibody-

based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 

81–84. doi:10.1038/nature10660 

 



   

  

139

Benen, T.D., Tonks, P., Kliche, A., Kapzan, R., Heeney, J.L., Wagner, R., 2014. 

Development and immunological assessment of VLP-based immunogens exposing 

the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 21, 79. 

doi:10.1016/j.immuni.2011.01.015 

Binley, J.M., Ban, Y.-E.A., Crooks, E.T., Eggink, D., Osawa, K., Schief, W.R., Sanders, 

R.W., 2010. Role of complex carbohydrates in human immunodeficiency virus type 

1 infection and resistance to antibody neutralization. J Virol 84, 5637–5655. 

doi:10.1128/JVI.00105-10 

Binley, J.M., Lybarger, E.A., Crooks, E.T., Seaman, M.S., Gray, E., Davis, K.L., Decker, 

J.M., Wycuff, D., Harris, L., Hawkins, N., Wood, B., Nathe, C., Richman, D., 

Tomaras, G.D., Bibollet-Ruche, F., Robinson, J.E., Morris, L., Shaw, G.M., 

Montefiori, D.C., Mascola, J.R., 2008. Profiling the specificity of neutralizing 

antibodies in a large panel of plasmas from patients chronically infected with human 

immunodeficiency virus type 1 subtypes B and C. J Virol 82, 11651–11668. 

doi:10.1128/JVI.01762-08 

Bomsel, M., Tudor, D., Drillet, A.-S., Alfsen, A., Ganor, Y., Roger, M.-G., Mouz, N., 

Amacker, M., Chalifour, A., Diomede, L., Devillier, G., Cong, Z., Wei, Q., Gao, H., 

Qin, C., Yang, G.-B., Zurbriggen, R., Lopalco, L., Fleury, S., 2011. Immunization 

with HIV-1 gp41 Subunit Virosomes Induces Mucosal Antibodies Protecting 

Nonhuman Primates against Vaginal SHIV Challenges. Immunity 34, 269–280. 

doi:10.1016/j.immuni.2011.01.015 

Brunel, F.M., Zwick, M.B., Cardoso, R.M.F., Nelson, J.D., Wilson, I.A., Burton, D.R., 

Dawson, P.E., 2006. Structure-function analysis of the epitope for 4E10, a broadly 

neutralizing human immunodeficiency virus type 1 antibody. J Virol 80, 1680–1687. 

doi:10.1128/JVI.80.4.1680-1687.2006 

Cardoso, R.M.F., Brunel, F.M., Ferguson, S., Zwick, M., Burton, D.R., Dawson, P.E., 

Wilson, I.A., 2007. Structural basis of enhanced binding of extended and helically 

constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J. 

Mol. Biol. 365, 1533–1544. doi:10.1016/j.jmb.2006.10.088 

Cardoso, R.M.F., Zwick, M.B., Stanfield, R.L., Kunert, R., Binley, J.M., Katinger, H., 

Burton, D.R., Wilson, I.A., 2005. Broadly neutralizing anti-HIV antibody 4E10 

recognizes a helical conformation of a highly conserved fusion-associated motif in 

gp41. Immunity 22, 163–173. doi:10.1016/j.immuni.2004.12.011 

Cho, M.W., Kim, Y.B., Lee, M.K., Gupta, K.C., Ross, W., Plishka, R., Buckler-White, 

A., Igarashi, T., Theodore, T., Byrum, R., Kemp, C., Montefiori, D.C., Martin, M.A., 

2001. Polyvalent envelope glycoprotein vaccine elicits a broader neutralizing 

antibody response but is unable to provide sterilizing protection against heterologous 

Simian/human immunodeficiency virus infection in pigtailed macaques. J Virol 75, 

2224–2234. doi:10.1128/JVI.75.5.2224-2234.2001 

Cho, M.W., Lee, M.K., Carney, M.C., Berson, J.F., Doms, R.W., Martin, M.A., 1998. 

Identification of determinants on a dualtropic human immunodeficiency virus type 1 

envelope glycoprotein that confer usage of CXCR4. J Virol 72, 2509–2515. 

Coëffier, E., Clément, J.M., Cussac, V., Khodaei-Boorane, N., Jehanno, M., Rojas, M., 

Dridi, A., Latour, M., Habib, El, R., Barré-Sinoussi, F., Hofnung, M., Leclerc, C., 

2000. Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA 

inserted into permissive sites of the MalE protein. Vaccine 19, 684–693. 



   

  

140

Correia, B.E., Ban, Y.-E.A., Holmes, M.A., Xu, H., Ellingson, K., Kraft, Z., Carrico, C., 

Boni, E., Sather, D.N., Zenobia, C., Burke, K.Y., Bradley-Hewitt, T., Bruhn-

Johannsen, J.F., Kalyuzhniy, O., Baker, D., Strong, R.K., Stamatatos, L., Schief, 

W.R., 2010. Computational Design of Epitope-Scaffolds Allows Induction of 

Antibodies Specific for a Poorly Immunogenic HIV Vaccine Epitope. Structure 18, 

1116–1126. doi:10.1016/j.str.2010.06.010 

Decroix, N., Hocini, H., Quan, C.P., Bellon, B., Kazatchkine, M.D., Bouvet, J.P., 2001. 

Induction in mucosa of IgG and IgA antibodies against parenterally administered 

soluble immunogens. Scand J Immunol 53, 401–409. 

Deeks, S.G., Schweighardt, B., Wrin, T., Galovich, J., Hoh, R., Sinclair, E., Hunt, P., 

McCune, J.M., Martin, J.N., Petropoulos, C.J., Hecht, F.M., 2006. Neutralizing 

antibody responses against autologous and heterologous viruses in acute versus 

chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on 

the ability of HIV to completely evade neutralizing antibody responses. J Virol 80, 

6155–6164. doi:10.1128/JVI.00093-06 

Dennison, S.M., Sutherland, L.L., Jaeger, F.H., Anasti, K.M., Parks, R., Stewart, S., 

Bowman, C., Xia, S.-M., Zhang, R., Shen, X., Scearce, R.M., Ofek, G., Yang, Y., 

Kwong, P.D., Santra, S., Liao, H.-X., Tomaras, G., Letvin, N.L., Chen, B., Alam, 

S.M., Haynes, B.F., 2011. Induction of antibodies in rhesus macaques that recognize 

a fusion-intermediate conformation of HIV-1 gp41. PLoS ONE 6, e27824. 

doi:10.1371/journal.pone.0027824 

Dhillon, A.K., Donners, H., Pantophlet, R., Johnson, W.E., Decker, J.M., Shaw, G.M., 

Lee, F.-H., Richman, D.D., Doms, R.W., Vanham, G., Burton, D.R., 2007. 

Dissecting the neutralizing antibody specificities of broadly neutralizing sera from 

human immunodeficiency virus type 1-infected donors. J Virol 81, 6548–6562. 

doi:10.1128/JVI.02749-06 

Eckhart, L., Raffelsberger, W., Ferko, B., Klima, A., Purtscher, M., Katinger, H., Rüker, 

F., 1996. Immunogenic presentation of a conserved gp41 epitope of human 

immunodeficiency virus type 1 on recombinant surface antigen of hepatitis B virus. J 

Gen Virol 77 ( Pt 9), 2001–2008. 

Ferrantelli, F., Hofmann-Lehmann, R., Rasmussen, R.A., Wang, T., Xu, W., Li, P.-L., 

Montefiori, D.C., Cavacini, L.A., Katinger, H., Stiegler, G., Anderson, D.C., 

McClure, H.M., Ruprecht, R.M., 2003. Post-exposure prophylaxis with human 

monoclonal antibodies prevented SHIV89.6P infection or disease in neonatal 

macaques. AIDS 17, 301–309. doi:10.1097/01.aids.0000050803.28043.96 

Frey, G., Peng, H., Rits-Volloch, S., Morelli, M., Cheng, Y., Chen, B., 2008. A fusion-

intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc. 

Natl. Acad. Sci. U.S.A. 105, 3739–3744. doi:10.1073/pnas.0800255105 

Gao, F., Weaver, E.A., Lu, Z., Li, Y., Liao, H.-X., Ma, B., Alam, S.M., Scearce, R.M., 

Sutherland, L.L., Yu, J.-S., Decker, J.M., Shaw, G.M., Montefiori, D.C., Korber, 

B.T., Hahn, B.H., Haynes, B.F., 2005. Antigenicity and immunogenicity of a 

synthetic human immunodeficiency virus type 1 group m consensus envelope 

glycoprotein. J Virol 79, 1154–1163. doi:10.1128/JVI.79.2.1154-1163.2005 

Georgiev, I.S., Gordon Joyce, M., Zhou, T., Kwong, P.D., 2013. Elicitation of HIV-1-

neutralizing antibodies against the CD4-binding site. Curr Opin HIV AIDS 8, 382–

392. doi:10.1097/COH.0b013e328363a90e 



   

  

141

Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., 

Werner, L., Mlisana, K., Sibeko, S., Williamson, C., Abdool Karim, S.S., Morris, L., 

CAPRISA002 Study Team, 2011. The neutralization breadth of HIV-1 develops 

incrementally over four years and is associated with CD4+ T cell decline and high 

viral load during acute infection. J Virol 85, 4828–4840. doi:10.1128/JVI.00198-11 

Gray, E.S., Moore, P.L., Choge, I.A., Decker, J.M., Bibollet-Ruche, F., Li, H., Leseka, 

N., Treurnicht, F., Mlisana, K., Shaw, G.M., Karim, S.S.A., Williamson, C., Morris, 

L., CAPRISA 002 Study Team, 2007. Neutralizing antibody responses in acute 

human immunodeficiency virus type 1 subtype C infection. J Virol 81, 6187–6196. 

doi:10.1128/JVI.00239-07 

Guenaga, J., Dosenovic, P., Ofek, G., Baker, D., Schief, W.R., Kwong, P.D., Karlsson 

Hedestam, G.B., Wyatt, R.T., 2011. Heterologous epitope-scaffold prime:boosting 

immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. 

PLoS ONE 6, e16074. doi:10.1371/journal.pone.0016074 

Habte, H.H., Banerjee, S., Shi, H., Qin, Y., Cho, M.W., 2015. Immunogenic properties of 

a trimeric gp41-based immunogen containing an exposed membrane-proximal 

external region. Virology 486, 187–197. doi:10.1016/j.virol.2015.09.010 

Hanson, M.C., Abraham, W., Crespo, M.P., Chen, S.H., Liu, H., Szeto, G.L., Kim, M., 

Reinherz, E.L., Irvine, D.J., 2015. Liposomal vaccines incorporating molecular 

adjuvants and intrastructural T-cell help promote the immunogenicity of HIV 

membrane-proximal external region peptides. Vaccine 33, 861–868. 

doi:10.1016/j.vaccine.2014.12.045 

Haynes, B.F., Fleming, J., St Clair, E.W., Katinger, H., Stiegler, G., Kunert, R., 

Robinson, J., Scearce, R.M., Plonk, K., Staats, H.F., Ortel, T.L., Liao, H.-X., Alam, 

S.M., 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-

1 antibodies. Science 308, 1906–1908. doi:10.1126/science.1111781 

Hessell, A.J., Rakasz, E.G., Poignard, P., Hangartner, L., Landucci, G., Forthal, D.N., 

Koff, W.C., Watkins, D.I., Burton, D.R., 2009. Broadly neutralizing human anti-HIV 

antibody 2G12 is effective in protection against mucosal SHIV challenge even at low 

serum neutralizing titers. PLoS Pathog 5, e1000433. 

doi:10.1371/journal.ppat.1000433 

Hinz, A., Schoehn, G., Quendler, H., Lutje Hulsik, D., Stiegler, G., Katinger, H., Seaman, 

M.S., Montefiori, D., Weissenhorn, W., 2009. Characterization of a trimeric MPER 

containing HIV-1 gp41 antigen. Virology 390, 221–227. 

doi:10.1016/j.virol.2009.05.015 

Hraber, P., Seaman, M.S., Bailer, R.T., Mascola, J.R., Montefiori, D.C., Korber, B.T., 

2014. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 

infection. AIDS 28, 163–169. doi:10.1097/QAD.0000000000000106 

Huang, J., Ofek, G., Laub, L., Louder, M.K., Doria-Rose, N.A., Longo, N.S., Imamichi, 

H., Bailer, R.T., Chakrabarti, B., Sharma, S.K., Alam, S.M., Wang, T., Yang, Y., 

Zhang, B., Migueles, S.A., Wyatt, R., Haynes, B.F., Kwong, P.D., Mascola, J.R., 

Connors, M., 2012. Broad and potent neutralization of HIV-1 by a gp41-specific 

human antibody. Nature 491, 406–412. doi:10.1038/nature11544 

Hulsik, D.L., Liu, Y.-Y., Strokappe, N.M., Battella, S., Khattabi, El, M., McCoy, L.E., 

Sabin, C., Hinz, A., Hock, M., Macheboeuf, P., Bonvin, A.M.J.J., Langedijk, J.P.M., 

Davis, D., Quigley, A.F., Aasa-Chapman, M.M.I., Seaman, M.S., Ramos, A., 



   

  

142

Poignard, P., Favier, A., Simorre, J.-P., Weiss, R.A., Verrips, C.T., Weissenhorn, W., 

Rutten, L., 2013. A gp41 MPER-specific Llama VHH Requires a Hydrophobic 

CDR3 for Neutralization but not for Antigen Recognition. PLoS Pathog 9, e1003202. 

doi:10.1371/journal.ppat.1003202 

Jain, S., Patrick, A.J., Rosenthal, K.L., 2010. Multiple tandem copies of conserved gp41 

epitopes incorporated in gag virus-like particles elicit systemic and mucosal 

antibodies in an optimized heterologous vector delivery regimen. Vaccine 28, 7070–

7080. doi:10.1016/j.vaccine.2010.08.009 

Joyce, J.G., 2002. Enhancement of alpha -Helicity in the HIV-1 Inhibitory Peptide 

DP178 Leads to an Increased Affinity for Human Monoclonal Antibody 2F5 but 

Does Not Elicit Neutralizing Responses in Vitro. IMPLICATIONS FOR VACCINE 

DESIGN. Journal of Biological Chemistry 277, 45811–45820. 

doi:10.1074/jbc.M205862200 

Julien, J.-P., Bryson, S., Nieva, J.L., Pai, E.F., 2008. Structural details of HIV-1 

recognition by the broadly neutralizing monoclonal antibody 2F5: epitope 

conformation, antigen-recognition loop mobility, and anion-binding site. J. Mol. 

Biol. 384, 377–392. doi:10.1016/j.jmb.2008.09.024 

Kamdem Toukam, D., Tenbusch, M., Stang, A., Temchura, V., Storcksdieck Genannt 

Bonsmann, M., Grewe, B., Koch, S., Meyerhans, A., Nchinda, G., Kaptue, L., 

Uberla, K., 2012. Targeting antibody responses to the membrane proximal external 

region of the envelope glycoprotein of human immunodeficiency virus. PLoS ONE 

7, e38068. doi:10.1371/journal.pone.0038068 

Kim, E., Kim, E., Okada, K., Okada, K., Kenniston, T., Kenniston, T., Raj, V.S., Raj, 

V.S., AlHajri, M.M., AlHajri, M.M., Farag, E.A.B.A., Farag, E.A.B.A., AlHajri, F., 

AlHajri, F., Osterhaus, A.D.M.E., Osterhaus, A.D.M.E., Haagmans, B.L., Haagmans, 

B.L., Gambotto, A., Gambotto, A., 2014. Immunogenicity of an adenoviral-based 

Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine 

32, 5975–5982. doi:10.1016/j.vaccine.2014.08.058 

Klein, J.S., Gnanapragasam, P.N.P., Galimidi, R.P., Foglesong, C.P., West, A.P., 

Bjorkman, P.J., 2009. Examination of the contributions of size and avidity to the 

neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc. Natl. 

Acad. Sci. U.S.A. 106, 7385–7390. doi:10.1073/pnas.0811427106 

Krebs, S.J., McBurney, S.P., Kovarik, D.N., Waddell, C.D., Jaworski, J.P., Sutton, W.F., 

Gomes, M.M., Trovato, M., Waagmeester, G., Barnett, S.J., DeBerardinis, P., 

Haigwood, N.L., 2014. Multimeric Scaffolds Displaying the HIV-1 Envelope MPER 

Induce MPER-Specific Antibodies and Cross-Neutralizing Antibodies when Co-

Immunized with gp160 DNA. PLoS ONE 9, e113463. 

doi:10.1371/journal.pone.0113463 

Kusov, Y.Y., Zamjatina, N.A., Poleschuk, V.F., Michailov, M.I., Morace, G., Eberle, J., 

Gauss-Müller, V., 2007. Immunogenicity of a chimeric hepatitis A virus (HAV) 

carrying the HIV gp41 epitope 2F5. Antiviral Res 73, 101–111. 

doi:10.1016/j.antiviral.2006.08.003 

Kwong, P.D., Doyle, M.L., Casper, D.J., Cicala, C., Leavitt, S.A., Majeed, S., Steenbeke, 

T.D., Venturi, M., Chaiken, I., Fung, M., Katinger, H., Parren, P.W.I.H., Robinson, 

J., Van Ryk, D., Wang, L., Burton, D.R., Freire, E., Wyatt, R., Sodroski, J., 

Hendrickson, W.A., Arthos, J., 2002. HIV-1 evades antibody-mediated neutralization 



   

  

143

through conformational masking of receptor-binding sites. Nature 420, 678–682. 

doi:10.1038/nature01188 

Kwong, P.D., Mascola, J.R., Nabel, G.J., 2013. Broadly neutralizing antibodies and the 

search for an HIV-1 vaccine: the end of the beginning. Nat. Rev. Immunol. 13, 693–

701. doi:10.1038/nri3516 

Labrijn, A.F., Poignard, P., Raja, A., Zwick, M.B., Delgado, K., Franti, M., Binley, J., 

Vivona, V., Grundner, C., Huang, C.-C., Venturi, M., Petropoulos, C.J., Wrin, T., 

Dimitrov, D.S., Robinson, J., Kwong, P.D., Wyatt, R.T., Sodroski, J., Burton, D.R., 

2003. Access of antibody molecules to the conserved coreceptor binding site on 

glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus 

type 1. J Virol 77, 10557–10565. 

Lai, R.P.J., Hock, M., Radzimanowski, J., Tonks, P., Hulsik, D.L., Effantin, G., Seilly, 

D.J., Dreja, H., Kliche, A., Wagner, R., Barnett, S.W., Tumba, N., Morris, L., 

LaBranche, C.C., Montefiori, D.C., Seaman, M.S., Heeney, J.L., Weissenhorn, W., 

2014. A Fusion Intermediate gp41 Immunogen Elicits Neutralizing Antibodies to 

HIV-1. J Biol Chem 289, 29912–29926. doi:10.1074/jbc.M114.569566 

Law, M., Cardoso, R.M.F., Wilson, I.A., Burton, D.R., 2007. Antigenic and 

Immunogenic Study of Membrane-Proximal External Region-Grafted gp120 

Antigens by a DNA Prime-Protein Boost Immunization Strategy. J Virol 81, 4272–

4285. doi:10.1128/JVI.02536-06 

Li, M., Gao, F., Mascola, J.R., Stamatatos, L., Polonis, V.R., Koutsoukos, M., Voss, G., 

Goepfert, P., Gilbert, P., Greene, K.M., Bilska, M., Kothe, D.L., Salazar-Gonzalez, 

J.F., Wei, X., Decker, J.M., Hahn, B.H., Montefiori, D.C., 2005. Human 

immunodeficiency virus type 1 env clones from acute and early subtype B infections 

for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79, 

10108–10125. doi:10.1128/JVI.79.16.10108-10125.2005 

Li, Y., Svehla, K., Louder, M.K., Wycuff, D., Phogat, S., Tang, M., Migueles, S.A., Wu, 

X., Phogat, A., Shaw, G.M., Connors, M., Hoxie, J., Mascola, J.R., Wyatt, R., 2009. 

Analysis of neutralization specificities in polyclonal sera derived from human 

immunodeficiency virus type 1-infected individuals. J Virol 83, 1045–1059. 

doi:10.1128/JVI.01992-08 

Liang, X., Munshi, S., Shendure, J., Mark, G., Davies, M.E., Freed, D.C., Montefiori, 

D.C., Shiver, J.W., 1999. Epitope insertion into variable loops of HIV-1 gp120 as a 

potential means to improve immunogenicity of viral envelope protein. Vaccine 17, 

2862–2872. 

Liao, M., Lu, Y., Xiao, Y., Dierich, M.P., Chen, Y., 2000. Induction of high level of 

specific antibody response to the neutralizing epitope ELDKWA on HIV-1 gp41 by 

peptide-vaccine. Peptides 21, 463–468. 

Luo, M., Yuan, F., Liu, Y., Jiang, S., Song, X., Jiang, P., Yin, X., Ding, M., Deng, H., 

2006. Induction of neutralizing antibody against human immunodeficiency virus type 

1 (HIV-1) by immunization with gp41 membrane-proximal external region (MPER) 

fused with porcine endogenous retrovirus (PERV) p15E fragment. Vaccine 24, 435–

442. doi:10.1016/j.vaccine.2005.08.006 

 

 

 



   

  

144

Mantis, N.J., Kozlowski, P.A., Mielcarz, D.W., Weissenhorn, W., Neutra, M.R., 2001. 

Immunization of mice with recombinant gp41 in a systemic prime/mucosal boost 

protocol induces HIV-1-specific serum IgG and secretory IgA antibodies. Vaccine 

19, 3990–4001. 

Marusic, C., Rizza, P., Lattanzi, L., Mancini, C., Spada, M., Belardelli, F., Benvenuto, E., 

Capone, I., 2001. Chimeric plant virus particles as immunogens for inducing murine 

and human immune responses against human immunodeficiency virus type 1. J Virol 

75, 8434–8439. 

Mascola, J.R., Stiegler, G., VanCott, T.C., Katinger, H., Carpenter, C.B., Hanson, C.E., 

Beary, H., Hayes, D., Frankel, S.S., Birx, D.L., Lewis, M.G., 2000. Protection of 

macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by 

passive infusion of neutralizing antibodies. Nat Med 6, 207–210. doi:10.1038/72318 

Matoba, N., Geyer, B.C., Kilbourne, J., Alfsen, A., Bomsel, M., Mor, T.S., 2006. 

Humoral immune responses by prime-boost heterologous route immunizations with 

CTB-MPR649–684, a mucosal subunit HIV/AIDS vaccine candidate. Vaccine 24, 

5047–5055. doi:10.1016/j.vaccine.2006.03.045 

Matyas, G.R., Wieczorek, L., Beck, Z., Ochsenbauer-Jambor, C., Kappes, J.C., Michael, 

N.L., Polonis, V.R., Alving, C.R., 2009. Neutralizing antibodies induced by 

liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 

4E10 epitope and lipid epitopes. AIDS 23, 2069–2077. 

doi:10.1097/QAD.0b013e32832faea5 

McGaughey, G.B., Citron, M., Danzeisen, R.C., Freidinger, R.M., Garsky, V.M., Hurni, 

W.M., Joyce, J.G., Liang, X., Miller, M., Shiver, J., Bogusky, M.J., 2003. HIV-1 

Vaccine Development:  Constrained Peptide Immunogens Show Improved Binding 

to the Anti-HIV-1 gp41 MAb. Biochemistry 42, 3214–3223. doi:10.1021/bi026952u 

Melikyan, G.B., 2008. Common principles and intermediates of viral protein-mediated 

fusion: the HIV-1 paradigm. Retrovirology 5, 111. doi:10.1186/1742-4690-5-111 

Mohan, T., Verma, P., Rao, D.N., 2014. Comparative mucosal immunogenicity of HIV 

gp41 membrane-proximal external region (MPER) containing single and multiple 

repeats of ELDKWA sequence with defensin peptides. Immunobiology 219, 292–

301. doi:10.1016/j.imbio.2013.11.001 

Moog, C., Fleury, H.J., Pellegrin, I., Kirn, A., Aubertin, A.M., 1997. Autologous and 

heterologous neutralizing antibody responses following initial seroconversion in 

human immunodeficiency virus type 1-infected individuals. J Virol 71, 3734–3741. 

Moore, P.L., Crooks, E.T., Porter, L., Zhu, P., Cayanan, C.S., Grisé, H., Corcoran, P., 

Zwick, M.B., Franti, M., Morris, L., Roux, K.H., Burton, D.R., Binley, J.M., 2006. 

Nature of nonfunctional envelope proteins on the surface of human 

immunodeficiency virus type 1. J Virol 80, 2515–2528. doi:10.1128/JVI.80.5.2515-

2528.2006 

Moore, P.L., Gray, E.S., Wibmer, C.K., Bhiman, J.N., Nonyane, M., Sheward, D.J., 

Hermanus, T., Bajimaya, S., Tumba, N.L., Abrahams, M.-R., Lambson, B.E., 

Ranchobe, N., Ping, L., Ngandu, N., Abdool Karim, Q., Abdool Karim, S.S., 

Swanstrom, R.I., Seaman, M.S., Williamson, C., Morris, L., 2012. Evolution of an 

HIV glycan-dependent broadly neutralizing antibody epitope through immune 

escape. Nat Med 18, 1688–1692. doi:10.1038/nm.2985 

 



   

  

145

Ni, J., Powell, R., Baskakov, I.V., DeVico, A., Lewis, G.K., Wang, L.-X., 2004. 

Synthesis, conformation, and immunogenicity of monosaccharide-centered 

multivalent HIV-1 gp41 peptides containing the sequence of DP178. Bioorg Med 

Chem 12, 3141–3148. doi:10.1016/j.bmc.2004.04.008 

Ofek, G., Guenaga, F.J., Schief, W.R., Skinner, J., Baker, D., Wyatt, R., Kwong, P.D., 

2010a. Elicitation of structure-specific antibodies by epitope scaffolds 107, 17880–

17887. doi:10.1073/pnas.1004728107 

Ofek, G., McKee, K., Yang, Y., Yang, Z.-Y., Skinner, J., Guenaga, F.J., Wyatt, R., 

Zwick, M.B., Nabel, G.J., Mascola, J.R., Kwong, P.D., 2010b. Relationship between 

antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third 

complementarity-determining region. J Virol 84, 2955–2962. 

doi:10.1128/JVI.02257-09 

Ofek, G., Tang, M., Sambor, A., Katinger, H., Mascola, J.R., Wyatt, R., Kwong, P.D., 

2004. Structure and mechanistic analysis of the anti-human immunodeficiency virus 

type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 78, 10724–10737. 

doi:10.1128/JVI.78.19.10724-10737.2004 

Pantophlet, R., Burton, D.R., 2006. GP120: Target for Neutralizing HIV-1 Antibodies. 

http://dx.doi.org/10.1146/annurev.immunol.24.021605.090557 24, 739–769. 

doi:10.1146/annurev.immunol.24.021605.090557 

Poignard, P., Moulard, M., Golez, E., Vivona, V., Franti, M., Venturini, S., Wang, M., 

Parren, P.W.H.I., Burton, D.R., 2003. Heterogeneity of envelope molecules 

expressed on primary human immunodeficiency virus type 1 particles as probed by 

the binding of neutralizing and nonneutralizing antibodies. J Virol 77, 353–365. 

Purtscher, M., Trkola, A., Gruber, G., Buchacher, A., Predl, R., Steindl, F., Tauer, C., 

Berger, R., Barrett, N., Jungbauer, A., 1994. A broadly neutralizing human 

monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS 

Res Hum Retroviruses 10, 1651–1658. 

Qin, Y., Banasik, M., Kim, S., Penn-Nicholson, A., Habte, H.H., LaBranche, C., 

Montefiori, D.C., Wang, C., Cho, M.W., 2014. Eliciting neutralizing antibodies with 

gp120 outer domain constructs based on M-group consensus sequence. Virology 

462-463, 363–376. doi:10.1016/j.virol.2014.06.006 

Qin, Y., Banerjee, S., Agrawal, A., Shi, H., Banasik, M., Lin, F., Rohl, K., LaBranche, 

C., Montefiori, D.C., Cho, M.W., 2015. Characterization of a Large Panel of Rabbit 

Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing 

Antibodies against the V3 Loop. PLoS ONE 10, e0128823. 

doi:10.1371/journal.pone.0128823 

Richman, D.D., Wrin, T., Little, S.J., Petropoulos, C.J., 2003. Rapid evolution of the 

neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. U.S.A. 

100, 4144–4149. doi:10.1073/pnas.0630530100 

Serrano, S., Araujo, A., Apellániz, B., Bryson, S., Carravilla, P., la Arada, de, I., Huarte, 

N., Rujas, E., Pai, E.F., Arrondo, J.L.R., Domene, C., Jiménez, M.A., Nieva, J.L., 

2014. Structure and Immunogenicity of a Peptide Vaccine, Including the Complete 

HIV-1 gp41 2F5 Epitope. J Biol Chem 289, 6565–6580. 

doi:10.1074/jbc.M113.527747 

Shibata, R., Igarashi, T., Haigwood, N., Buckler-White, A., Ogert, R., Ross, W., Willey, 

R., Cho, M.W., Martin, M.A., 1999. Neutralizing antibody directed against the HIV-



   

  

146

1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections 

of macaque monkeys. Nat Med 5, 204–210. doi:10.1038/5568 

Simek, M.D., Rida, W., Priddy, F.H., Pung, P., Carrow, E., Laufer, D.S., Lehrman, J.K., 

Boaz, M., Tarragona-Fiol, T., Miiro, G., Birungi, J., Pozniak, A., McPhee, D.A., 

Manigart, O., Karita, E., Inwoley, A., Jaoko, W., Dehovitz, J., Bekker, L.-G., 

Pitisuttithum, P., Paris, R., Walker, L.M., Poignard, P., Wrin, T., Fast, P.E., Burton, 

D.R., Koff, W.C., 2009. Human immunodeficiency virus type 1 elite neutralizers: 

individuals with broad and potent neutralizing activity identified by using a high-

throughput neutralization assay together with an analytical selection algorithm. J 

Virol 83, 7337–7348. doi:10.1128/JVI.00110-09 

Sodroski, J.G., Wyatt, R., Kwong, P.D., Desjardins, E., Sweet, R.W., Robinson, J., 

Hendrickson, W.A., 1998. The antigenic structure of the HIV gp120 envelope 

glycoprotein. Nature 393, 705–711. doi:10.1038/31514 

Spieker-Polet, H., Sethupathi, P., Yam, P.C., Knight, K.L., 1995. Rabbit monoclonal 

antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc. 

Natl. Acad. Sci. U.S.A. 92, 9348–9352. 

Stiegler, G., Kunert, R., Purtscher, M., Wolbank, S., Voglauer, R., Steindl, F., Katinger, 

H., 2001. A potent cross-clade neutralizing human monoclonal antibody against a 

novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum 

Retroviruses 17, 1757–1765. doi:10.1089/08892220152741450 

Strasz, N., Morozov, V.A., Kreutzberger, J., Keller, M., Eschricht, M., Denner, J., 2014. 

Immunization with Hybrid Proteins Containing the Membrane Proximal External 

Region of HIV-1. AIDS Res Hum Retroviruses 30, 498–508. 

doi:10.1089/aid.2013.0191 

Sun, Z.-Y.J., Oh, K.J., Kim, M., Yu, J., Brusic, V., Song, L., Qiao, Z., Wang, J.-H., 

Wagner, G., Reinherz, E.L., 2008. HIV-1 Broadly Neutralizing Antibody Extracts Its 

Epitope from a Kinked gp41 Ectodomain Region on the Viral Membrane. Immunity 

28, 52–63. doi:10.1016/j.immuni.2007.11.018 

Tomaras, G.D., Yates, N.L., Liu, P., Qin, L., Fouda, G.G., Chavez, L.L., Decamp, A.C., 

Parks, R.J., Ashley, V.C., Lucas, J.T., Cohen, M., Eron, J., Hicks, C.B., Liao, H.-X., 

Self, S.G., Landucci, G., Forthal, D.N., Weinhold, K.J., Keele, B.F., Hahn, B.H., 

Greenberg, M.L., Morris, L., Karim, S.S.A., Blattner, W.A., Montefiori, D.C., Shaw, 

G.M., Perelson, A.S., Haynes, B.F., 2008. Initial B-cell responses to transmitted 

human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and 

IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of 

initial viremia. J Virol 82, 12449–12463. doi:10.1128/JVI.01708-08 

van Gils, M.J., Sanders, R.W., 2013. Broadly neutralizing antibodies against HIV-1: 

templates for a vaccine. Virology 435, 46–56. doi:10.1016/j.virol.2012.10.004 

Venditto, V.J., Watson, D.S., Motion, M., Montefiori, D., Szoka, F.C., 2013. Rational 

design of membrane proximal external region lipopeptides containing chemical 

modifications for HIV-1 vaccination. Clin. Vaccine Immunol. 20, 39–45. 

doi:10.1128/CVI.00615-12 

 

 

 

 



   

  

147

Venditto, V.J., Wieczorek, L., Molnar, S., Teque, F., Landucci, G., Watson, D.S., 

Forthal, D., Polonis, V.R., Levy, J.A., Szoka, F.C., 2014. Chemically modified 

peptides based on the membrane-proximal external region of the HIV-1 envelope 

induce high-titer, epitope-specific nonneutralizing antibodies in rabbits 21, 1086–

1093. doi:10.1128/CVI.00320-14 

Wei, X., Decker, J.M., Liu, H., Zhang, Z., Arani, R.B., Kilby, J.M., Saag, M.S., Wu, X., 

Shaw, G.M., Kappes, J.C., 2002. Emergence of resistant human immunodeficiency 

virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. 

Agents Chemother. 46, 1896–1905. 

Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Wu, X., Salazar-Gonzalez, J.F., 

Salazar, M.G., Kilby, J.M., Saag, M.S., Komarova, N.L., Nowak, M.A., Hahn, B.H., 

Kwong, P.D., Shaw, G.M., 2003. Antibody neutralization and escape by HIV-1. 

Nature 422, 307–312. doi:10.1038/nature01470 

Ye, L., Wen, Z., Dong, K., Wang, X., Bu, Z., Zhang, H., Compans, R.W., Yang, C., 

2011. Induction of HIV neutralizing antibodies against the MPER of the HIV 

envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. PLoS 

ONE 6, e14813. doi:10.1371/journal.pone.0014813 

Yi, G., Lapelosa, M., Bradley, R., Mariano, T.M., Dietz, D.E., Hughes, S., Wrin, T., 

Petropoulos, C., Gallicchio, E., Levy, R.M., Arnold, E., Arnold, G.F., 2013. 

Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing 

responses. PLoS ONE 8, e72205. doi:10.1371/journal.pone.0072205 

Zhang, H., Huang, Y., Fayad, R., Spear, G.T., Qiao, L., 2004. Induction of Mucosal and 

Systemic Neutralizing Antibodies against Human Immunodeficiency Virus Type 1 

(HIV-1) by Oral Immunization with Bovine Papillomavirus-HIV-1 gp41 Chimeric 

Virus-Like Particles. J Virol 78, 8342–8348. doi:10.1128/JVI.78.15.8342-8348.2004 

Zhu, P., Liu, J., Bess, J., Chertova, E., Lifson, J.D., Grisé, H., Ofek, G.A., Taylor, K.A., 

Roux, K.H., 2006. Distribution and three-dimensional structure of AIDS virus 

envelope spikes. Nature 441, 847–852. doi:10.1038/nature04817 

Zwick, M.B., Jensen, R., Church, S., Wang, M., Stiegler, G., Kunert, R., Katinger, H., 

Burton, D.R., 2005. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 

2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal 

external region of glycoprotein gp41 to neutralize HIV-1. J Virol 79, 1252–1261. 

doi:10.1128/JVI.79.2.1252-1261.2005 

Zwick, M.B., Labrijn, A.F., Wang, M., Spenlehauer, C., Saphire, E.O., Binley, J.M., 

Moore, J.P., Stiegler, G., Katinger, H., Burton, D.R., Parren, P.W., 2001. Broadly 

neutralizing antibodies targeted to the membrane-proximal external region of human 

immunodeficiency virus type 1 glycoprotein gp41. J Virol 75, 10892–10905. 

doi:10.1128/JVI.75.22.10892-10905.2001 

 

 

 

 

 

 

 

 



   

  

148

CHAPTER 6 

CONCLUSION AND FUTURE DIRECTION 

  

Despite more than three decades of HIV-1 research, the goal of designing the 

perfect vaccine that can prevent against the large variety of circulating strains has yet to 

be achieved.  However, the quest to meet this challenge has provided us with great 

appreciation for the complex mechanisms evolved by the virus to counteract the host 

immune system.  While these past failures highlight how little is truly understood about 

the functioning of the immune system in response to a pathogen, they have also 

challenged us to develop newer methods that push the boundaries of immunology, 

virology, structural biology, molecular biology and vaccinology.  From a vaccine 

perspective, the induction of bnAbs remains one of the major goals of an HIV-1 vaccine.  

This dissertation presents an evaluation of different vaccine approaches to target the 

highly conserved gp41 MPER domain.  These approaches include (a) silencing of a non-

neutralizing immunodominant epitope, (b) use of soluble, putative fusion intermediate 

forms of gp41, (c) use of a membrane-bound gp41 antigen, and (d) use of novel prime-

boost immunization strategies.  Several interesting conclusions were made as discussed in 

the different chapters. 

The immunogenicity of a particular epitope can be influenced by the presence of 

other neighboring epitopes.  In fact, HIV-1 uses immunodominant epitopes (e.g. V3 loop) 

that elicit non-neutralizing or strain-specific neutralizing antibodies as a decoy to prevent 

the host immune system from focusing on subdominant epitopes capable of eliciting 

bnAbs1-3.  Interestingly, evaluation of MPER immunogenicity in context of a different 

antigen, gp41-54Q, revealed that the antibody response was directed predominantly 
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against the cluster II region in the HR2 domain (unpublished data).  Additionally, the 

cluster II immunodominant region generally gives rise to non-neutralizing antibodies 

capable of competing with anti-MPER bnAbs like 2F54-6.  Hence, in Chapter 2, the 

cluster II epitope was masked on gp41-54Q, and the ability of this approach to redirect 

antibody response to other subdominant epitopes, especially the MPER, was evaluated.  

Results showed that the MPER domain is quite accessible despite masking of the cluster 

II epitope.  However, while this modification was successful in preventing responses 

against the cluster II region, induced antibodies were redirected towards the N-terminus 

end of HR2 instead of the MPER domain.  It is important to emphasize that epitope 

immunogenicity is context dependent.  Hence, these results might be specific to gp41-

54Q and similar antigens that contain only HR2 and MPER domains.  Whether this 

strategy can generate MPER targeting antibodies in context of a larger gp41 antigen 

remains to be determined.   

The MPER domain was found to be highly immunogenic in a different antigen, 

named gp41-HR1-54Q7.  However, antibodies were directed against the non-neutralizing 

face of MPER and hence failed to neutralize the virus.  Since the crystal structure of this 

antigen revealed that it was in a near post-fusion state, it is likely that this conformation 

was less than optimal to target the MPER on native virions prior to fusion.  Furthermore, 

others have shown that the putative gp41 fusion intermediate form can present MPER in 

a more optimal conformation for binding to bnAbs8-13.  Chapter 3 described attempts to 

generate putative fusion intermediates (pFIs) of gp41 by disrupting the near post-fusion 

conformation of gp41-HR1-54Q.  Detailed antigenic evaluation revealed that sequence 

changes outside of the MPER, even as far as the HR1 domain, induced overall 
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conformational changes that influenced MPER immunogenicity. While both near post-

fusion and pFIs generated strong antibodies against the MPER domains, there was a 

surprising difference between how these antibodies bound MPER.  Such differences 

would remain un-noticed using traditional methods that only employ overlapping 

peptides to determine targeted epitopes.  However, as shown in this chapter and our 

previous study, polyclonal sera binding analysis using alanine scanning peptides of a 

known epitope might reveal whether a vaccine can target the correct binding face. This is 

especially important for MPER-based vaccines because the MPER contains a neutralizing 

face that is bound by bnAbs and a non-neutralizing face that might be hidden at the viral 

membrane interface.  While one of the pFIs came close to targeting the complete 

neutralizing face bound by the bnAb 4E10, it was evident that antibodies generated also 

targeted part of the non-neutralizing face.  It is likely that since MPER in gp41 

ectodomain constructs lacked any structural constrains (e.g. transmembrane domain) at 

the C-terminus end, it was flexible and accessible on both the neutralizing and non-

neutralizing face.  These results also suggest other gp41 ectodomain-only antigens that 

contain an MPER domain with a free C-terminus end might have similar problems in 

restricting antibody response to the neutralizing face.  As discussed in this chapter, the 

lack of neutralization seen in two other similar pFIs by other groups14,15 suggest that 

soluble pFIs of gp41 might not be sufficient.   

To limit antibody responses towards the neutralizing face of MPER, a gp41 

antigen consisting of the HR2, MPER and TM domains was designed.  As described in 

Chapter 4, the gp41-54TM proteliposomes were successful in displaying the MPER in a 

way that could be accessed by different bnAbs.  The antigen elicited strong antibody 
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responses and targeted the MPER C-terminus that contained the 4E10 epitope.  

Interestingly, sera from immunized animals failed to bind the C-terminus biotinylated 13-

mer peptide that was used for alanine scanning analysis described previously.  This 

difference in binding suggested that antibodies elicited by the transmembrane domain 

containing gp41 antigen were significantly different from those elicited by ectodomain 

only containing antigens.  Future binding analyses need to be performed, either using 

longer peptides or using N-terminus biotinylated 13-mer alanine scanning peptides to 

understand this difference in binding.  These experiments will also reveal whether gp41-

54TM was successful in inducing antibodies against the neutralizing face of MPER.  

However, it is important to remember that sera from gp41-54TM immunized rabbits 

failed to neutralize pseudoviruses.  Based on this, induced antibodies might target part of 

the non-neutralizing MPER face.  Alternately, it might be possible that while these 

antibodies can indeed bind the neutralizing face of MPER, they might not access the 

MPER domain on the virion.  For example, the CDR3 regions of these antibodies might 

not be long enough, and their ability to reach MPER might be hindered by the presence 

of the bulky gp120 head.  The other potential reason for the failure of gp41-54TM might 

be that it lacks the right conformation.  With regards to this, it might be interesting to 

present some of the previously described pFIs (Chapter 3) in the context of the TM 

domain and deliver them on liposomes.  The liposome composition could also be altered 

to include cholesterol since it is in abundance in the native HIV-1 membrane16. 

All of the previous attempts involved multiple immunizations using a single 

antigen.  While these subunit vaccines elicited strong antibody responses, they may not 

have contained all the structural elements required to mimic the native virion.  
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Unfortunately, use of larger, more native virion-like antigens might have their own 

drawback due to the presence of immunodominant non-neutralizing epitopes.  Hence, a 

strategy was designed to prime rabbits with smaller antigens to first direct antibody 

response towards desired epitopes and then successively boost with larger antigens to 

direct maturation of these antibodies to bind the native virion.  In Chapter 5, this strategy 

was tested in two groups using different priming antigens.  The membrane bound priming 

antigen followed by boosts with other antigens failed to elicit response against MPER.  

Interestingly, three successive immunizations with gp41-54TM induced some MPER-

targeting antibodies (Chapter 4).  Hence, one possibility is that the combination with 

other antigens diverted the immune response to regions outside the MPER.  In 

comparison, the prime-boost approach using the soluble MPER28x3 induced some 

MPER targeting antibody response.  However, this response appeared to be triggered at 

least in part due to boosting with the priming antigen.  Unfortunately, rabbits still did not 

demonstrate serum neutralization activity.  

To evaluate whether any antibodies were raised against the neutralizing face of 

MPER, hybridomas were generated from one rabbit.  While this is a time consuming and 

labor intensive process, the analysis of humoral immune response at the monoclonal level 

has the potential to identify rare antibodies that might not be detected in assays utilizing 

whole sera due to different clonal quantities and specificities.  For example, if antibodies 

binding the non-neutralizing face are in abundance, MPER peptide based alanine 

scanning analysis of the total sera will only detect the predominant response.  Three 

different hybridomas were generated and their epitopes were characterized.  While the 

6C10 hybridoma bound the junction between the cluster II and MPER regions, two other 
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hybridomas revealed interesting binding patterns.  First, binding analysis of 21B5 

revealed that residues 681YIK683 were required for binding in addition to the 4E10 epitope 

sequence.  This requirement is similar to that of 10E8.  Since this hybridoma failed to 

bind the C-terminus biotinylated 13-mer 671 peptide, future binding analysis must be 

performed using either longer or N-terminus biotinylated peptides to determine which 

other residues are critical.  This result will further reveal whether the binding epitope is 

the same as 10E8.  Next, 9F6 binding analysis revealed a striking overlap between its 

epitope and the 4E10 epitope.  To our knowledge, this is the first report to demonstrate 

that antibodies can be targeted so close to the 4E10 epitope.   

Isolation and characterization of all three antibodies, but especially 9F6, will be 

critical for future progress.  First, the binding affinities of the purified antibody should be 

tested and compared to 4E10 and 10E8 bnAbs.  While 9F6 shows striking overlap with 

the 4E10 epitope, binding interactions and affinities to individual residues may or may 

not be the same as 4E10.  Next, whether 9F6 can bind the same epitope in context of the 

native virion will important to address.  Successful binding of the native virion is 

expected to result in neutralization, and will merit further testing to determine 

neutralization breadth and potency.  If initially negative, the neutralization assay should 

be repeated using Fab (fragment antigen-binding) fragments as they are less bulky than 

whole antibodies and hence might be able to access the MPER epitope, before concluding 

that they are non-neutralizing. 

The inability to neutralize is equally likely because of several factors.  First, 

unlike 4E10, 9F6 does not bind residues I675 and L679.  Interestingly, 10E8 does not 

bind I675 residue either, but its binding involves N671 and Y/K683 residues17. While the 
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role of N671 in 9F6 binding must be confirmed using crystallography, alanine scanning 

demonstrated that Y683 is not required.  Hence, future neutralization assays will be 

important to analyze the effect of these differences.  Second, MPER binding bnAbs 

isolated from patients have unique properties like long HCDR3s18 and/or polyreactivity.  

9F6 may not replicate these qualities, especially since in patients these properties might 

have been generated after extensive somatic hypermutation and maturation.  Future 

antibody sequencing and lipid binding assays must be performed to answer these 

questions.  9F6 was generated from rabbits, an animal model that might inherently lack 

the required immune components to mimic the antibody maturation observed in infected 

humans.  In fact, comparative analysis of HCDR3s suggests that rabbits lack long D and J 

segments18,19.  Furthermore, of the few reported studies that resulted in the elicitation of 

MPER targeting antibodies with modest neutralizing abilities20-25, four were performed in 

guinea pigs20,23-25 and one in llamas21.  With regards to this, it might be interesting to test 

whether other animal models, including non-human primates, can generate similar 9F6-

like or better antibodies following the same immunization protocol.  Finally, while the 

immunogenicity of the MPER28x3 antigen alone has been tested before (unpublished 

data), lack of antibody characterization at the monoclonal level prevents us from 

concluding whether similar 9F6-like antibodies can be generated by immunizing rabbits 

with MPER28x3 only. 

Overall, the MPER domain is an attractive candidate for HIV-1 vaccine design.  

However, as demonstrated in this dissertation and by many others before, the lack of 

structural information about MPER conformation is a difficult challenge to overcome, 

especially for designing future vaccines.  While the approaches tested here are somewhat 
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empirical, the results presented will hopefully contribute to future efforts in the fight 

against the global HIV-1 pandemic. 
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APPENDIX 

IMMUNOGENIC PROPERTIES OF A TRIMERIC GP41-BASED IMMUNOGEN 

CONTAINING AN EXPOSED MEMBRANE-PROXIMAL EXTERNAL REGION. 
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Abstract 

The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive 

target for vaccine development.  Thus, better understanding of its immunogenic 

properties in various structural contexts is important.  We previously described the crystal 

structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the 

heptad repeat regions 1 and 2 and the MPER.  The protein was efficiently recognized by 

broadly neutralizing antibodies.  Here, we describe its immunogenic properties in rabbits.  

The protein was highly immunogenic, especially the C-terminal end of the MPER 

containing 4E10 and 10E8 epitopes (671NWFDITNWLWYIK683).  Although antibodies 

exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was 

not detected. Detailed mapping analyses indicated that amino acid residues critical for 

recognition resided on faces of the alpha helix that are either opposite of or perpendicular 

to the epitopes recognized by 4E10 and 10E8.  These results provide critical information 

for designing the next generation of MPER-based immunogens.  

 

Introduction 

The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) 

serves a critical role of mediating virus entry into host cells. This protein is also 
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immunologically important because it is the sole target against which neutralizing 

antibodies are elicited in infected individuals.  The two subunits of the envelope 

glycoprotein, gp120 and gp41, pose different sets of challenges for HIV-1 vaccine 

design.  Besides being heavily glycosylated and highly variable, the gp120 subunit 

contains many immunodominant epitopes that act as decoys, which provide limited, if 

any, protection (Pantophlet and Burton, 2006; Sodroski et al., 1998; Wei et al., 2003).  

While several anti-gp120 broadly neutralizing antibodies (bnAbs) have been isolated 

from infected individuals (Blattner et al., 2014; Buchacher et al., 1994; Burton et al., 

1991; Diskin et al., 2011; Falkowska et al., 2014; Klein et al., 2012; Scharf et al., 2014; 

Scheid et al., 2011; Walker et al., 2011; 2009; Wu et al., 2010), most of the epitopes 

targeted by these antibodies are non-linear and highly conformational.  Hence, designing 

gp120 antigens that can present the neutralizing epitopes in the correct conformation, 

while limiting response to other non-protective immunodominant epitopes, has been a 

difficult task.   

In comparison, gp41 is smaller, less variable and less glycosylated.  It contains a 

highly conserved domain (~22 amino acid residues) called the membrane-proximal 

external region (MPER) that lies between heptad repeat region 2 (HR2) and the 

transmembrane (TM) domain.  This MPER contains linear epitopes targeted by a number 

of bnAbs, including 2F5, Z13e1, 4E10 and 10E8 (Huang et al., 2012; Kwong et al., 2013; 

and reviewed in Montero et al., 2008; Purtscher et al., 1994; Stiegler et al., 2001; van Gils 

and Sanders, 2013; Zwick et al., 2001).  Unfortunately, the structure of gp41 is thought to 

be highly dynamic, undergoing significant conformational changes upon receptor binding 

and during the fusion process(Mao et al., 2013; Melikyan, 2008).  In the native, pre-
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fusion state, gp41 presumably exists in a metastable conformation that stores the free 

energy needed for membrane fusion.  Following gp120 binding to CD4 and to a co-

receptor, gp41 transforms into a fusion-active intermediate in which the N-terminal 

fusion peptide (FP) inserts into the host-cell membrane.  Subsequently, the two heptad 

repeat regions, HR1 and HR2, are brought together to form a highly stable six-helix 

bundle, which concomitantly leads to the formation of a hairpin structure that completes 

the fusion of the viral and cellular membranes (Melikyan, 2008).  This metastable and 

transient nature of the gp41 structure has made it difficult to design vaccine antigens that 

can present epitopes in their native form so as to generate potent bnAbs.   

 Significant efforts have been made for developing MPER-based vaccines 

(Montero et al., 2008).  Some of the vaccine candidates evaluated so far include 

immunogens based on short MPER peptides, either alone or coupled to carrier proteins 

(Decroix et al., 2001; Joyce, 2002; Liao et al., 2000; Matoba et al., 2006; McGaughey et 

al., 2003; Ni et al., 2004); the use of artificial scaffolds containing stabilized MPER 

epitopes (Correia et al., 2010; Guenaga et al., 2011; Ofek et al., 2010); hybrid/fusion 

proteins (Coëffier et al., 2000; Hinz et al., 2009; Krebs et al., 2014; Law et al., 2007; 

Liang et al., 1999; Mantis et al., 2001; Strasz et al., 2014); chimeric viruses or virus-like 

particles displaying MPER epitopes (Arnold et al., 2009; Benen et al., 2014; Bomsel et 

al., 2011; Eckhart et al., 1996; Jain et al., 2010; Kamdem Toukam et al., 2012; Kim et al., 

2007; Luo et al., 2006; Marusic et al., 2001; Muster et al., 1995; Ye et al., 2011; Yi et al., 

2013; Zhang et al., 2004); and presentation of MPER peptides on liposomes (Dennison et 

al., 2011; Hanson et al., 2015; Hulsik et al., 2013; Lai et al., 2014; Matyas et al., 2009; 

Mohan et al., 2014; Serrano et al., 2014; Venditto et al., 2013; 2014).  Despite these 
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efforts, none of them succeeded in inducing bnAbs against the MPER, albeit a few recent 

studies reported induction of modest levels of cross-clade neutralizing activity (Hulsik et 

al., 2013; Krebs et al., 2014; Lai et al., 2014; Ye et al., 2011; Yi et al., 2013).  These 

results highlight the difficulty in eliciting anti-MPER bnAbs through vaccination.   

There likely are multiple reasons for these unsuccessful attempts.  Short peptide-

based immunogens might be lacking helper T cell epitopes that are needed to induce 

robust CD4+ T cell immunity.  In addition, peptides, in the absence of neighboring 

domains, might not fold into the conformation that may exist in the native trimeric 

envelope spikes on virus particles.  However, merely mimicking bnAb-bound 

conformations might not be sufficient to elicit such antibodies since MPER epitopes 

constrained in artificial scaffolds also failed to elicit bnAbs (Correia et al., 2010; Guenaga 

et al., 2011; McGaughey et al., 2003; Ofek et al., 2010).  Chimeric viruses with MPER 

grafts have shown to induce poor anti-MPER antibody titers (Eckhart et al., 1996; Kusov 

et al., 2007; Luo et al., 2006; Zhang et al., 2004).  This could be due to the presence of 

other epitopes that might be more immunogenic than the MPER and distract immune 

responses away from it.  Thus, the relative immunogenicity of the target epitope is 

important when in the context of a large protein.  Finally, choosing appropriate adjuvants 

could also be an important factor, not only for enhancing immune responses per se, but 

also for making sure that the adjuvant being used is able to preserve the correct 

conformation of critical neutralizing epitopes.   

As a part of our efforts to develop gp41-based HIV-1 vaccine candidates, one of 

our goals has been to better understand the relationship between antigenic structures and 

their immunogenic properties.  Towards this goal, we generated various gp41 constructs 
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containing the MPER.  One of these constructs, gp41-HR1-54Q, contains a portion of 

HR1 connected to HR2 by a short linker, followed by the MPER and a 6xHis tag.  Not 

surprisingly, structural analyses of this construct indicated that it forms a stable six-helix 

bundle, which represents a post-fusion state (Shi et al., 2010).  However, considering that 

the MPER was extended away from the six-helix bundle and that it was efficiently 

recognized by bnAbs 2F5, Z13e1 and 4E10 (Shi et al., 2010), we evaluated its 

immunogenic properties in rabbits.  Although our antigen elicited strong antibody 

responses against the C-terminal end of the MPER that harbors 4E10 and 10E8 epitopes, 

no neutralizing activity was detected.  Despite this failure, the results of our study 

demonstrate that the region targeted by 4E10 and 10E8 can be made highly 

immunogenic, even in the context of a large protein.   

 

Results 

Rationales for gp41-HR1-54Q design and its structure. 

For designing an immunogen based on gp41, we wanted to (1) incorporate as 

much of gp41 as possible in order to provide sufficient helper T cell epitopes; (2) make 

sure that critical neutralizing epitopes on the MPER are accessible (viz. 2F5, Z13e1 and 

4E10; 10E8 was not discovered at the time this study began); (3) ensure that the antigen 

is expressed efficiently, rendered soluble and easy to purify; and (4) minimize the 

immunodominant epitopes that induce non-neutralizing antibodies.  One of the constructs 

we generated, gp41-HR1-54Q, is shown in Fig. 1A.  The immunodominant C-C loop 

between the HR1 and HR2 was replaced with a GGGGS linker.  Concomitantly, the C- 

and N-terminal ends of HR1 and HR2 were also trimmed by six and two amino acids, 
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respectively.  While this flexible linker allowed the HR1 and HR2 domains to freely 

interact with each other, we hypothesized that replacement of the C-C Loop with the 

linker would avoid diverting immune responses away from the MPER domain. Secondly, 

the fusion peptide (FP) was removed to enhance solubility.  Furthermore, the fusion 

peptide-proximal region (FPPR) between FP and HR1 was removed to eliminate any 

possible interactions between FPPR and MPER, which could interfere with recognition 

by bnAbs.   

As shown in Fig. 1B, gp41-HR1-54Q was expressed at high levels (>120 mg/l of 

purified protein).  Although the protein fractionated in insoluble inclusion bodies, the 

protein could be readily solubilized with urea, refolded by step-wise removal of urea, and 

purified to homogeneity (Shi et al., 2010).  Although our original intent was to remove 

the T7Tag by cleaving it with trypsin, as we previously observed that other potential 

digestion sites were resistant (data not shown), the tag also could not be cleaved, 

suggesting inaccessibility of the site.  As shown by the crystal structure of the protein 

(Fig. 1C; (Shi et al., 2010)), HR1 and HR2 domains formed a highly stable six-helix 

bundle structure.  The N-terminal eight amino acids of MPER were also highly ordered 

(662ALDKWASL669).  The N-terminal 12 residues containing the T7Tag, as well as the last 

eight residues (676TNWLWYIQ683) and the 6xHis tag were not ordered and their 

structures could not be defined.  In addition, the side chains of six residues at the end 

(670WNWFDI675) could not be resolved, suggesting some flexibility.  In contrast to the 

structure of our gp41-HR1-54Q, a crystal structure of two peptides encompassing FPPR-

HR1 (a.a. 528-581) and HR2-MPER (a.a. 628-683) regions (Fig. 1D; (Buzon et al., 

2010)), which was reported nearly at the same time of our structural study, indicated that 
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FPPR interacts with MPER to enhance stability of the six-helix bundle.  As a result, the 

MPER region became highly ordered and its structure could be resolved further 

downstream to Y681.  Thus, the structural state of our immunogen might represent a “near 

post-fusion”, rather than the “post-fusion”, in regards to the MPER.         

 

Antigenicity and immunogenicity of gp41-HR1-54Q  

We have previously shown that gp41-HR1-54Q could be efficiently recognized 

by three bnAbs against MPER (2F5, Z13e1 and 4E10; (Shi et al., 2010)).  10E8, which 

was more recently isolated, also binds the protein, albeit with lower affinity (data not 

shown; Fig. 5).  This is likely due to the fact that our immunogen contains K683Q 

substitution and that K or R683 is one of the amino acid residues recognized by 10E8 

(Huang et al., 2012).  Since these results indicated that the epitopes targeted by the bnAbs 

were accessible and could fold into correct conformations, we proceeded to evaluate the 

immunogenicity of gp41-HR1-54Q. 

Six rabbits were immunized with gp41-HR1-54Q.  Zn-chitosan was used as an 

adjuvant/delivery platform, which we have recently shown to induce strong antibody 

responses against gp120-based antigens (Qin et al., 2014a).  Zn-chitosan was particularly 

well suited for our immunogen compared to many adjuvants that are oil/lipid-based 

considering that the MPER regions is highly hydrophobic.  Rabbits were immunized four 

times subcutaneously on weeks 0, 4, 9 and 15.  Pre- and post-immune sera (2 weeks post-

immunization) were collected and antibody titers were determined by ELISA against the 

immunogen (Fig. 2).  Strong antibody responses were observed in all of the animals.  In 

particular, we were quite surprised to see end-point antibody titers approaching nearly 
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1x107 even after only a single immunization.  Antibody titers increased substantially after 

the second immunization in most of the animals resulting in end-point titers between 

1x107 and 1x108; however, titers did not increase further after the third or the fourth 

immunizations, indicating that antibody responses reached the maximum level after two 

immunizations.  Despite having induced high levels of antibodies against gp41-HR1-

54Q, none of the sera exhibited neutralizing activity against HIV-1 pseudoviruses in a 

standard TZM-bl cell based neutralization assay (data not shown).   

 

Detailed characterization of antibody responses. 

Despite failing to exhibit neutralizing activity, understanding the properties of 

antibodies elicited is important as they may provide hints as to why they failed to 

neutralize, and facilitate designing better immunogens.  Towards this goal, immunogenic 

epitope mapping analyses were conducted by ELISA using various protein fragments and 

peptides spanning different segments of gp41-HR1-54Q (Fig. 3).   

First, ELISAs were done with three long peptides available from the NIH 

repository, that cover the entire length of the immunogen: HR1 (N36), HR2 (C34) and 

MPER (661LELDKWASLWNWFDITNWLWYIK683).  Despite some sequence 

differences in the N-terminal half of the C34 peptide, it was used since the cluster II 

region was quite conserved.  Although not unexpected, antibodies against N36 were not 

detected.  Considering that HR1 forms the inner core of the six-helix bundle, it is possible 

that they are simply not exposed enough to elicit antibody responses.  In this regard, it 

was surprising to see little to no reactivity against C34 or MPER peptides since they are 

well exposed.  This lack of reactivity could be due to a possibility that the vast majority 
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of the antibodies are against non-linear epitopes and that these peptides do not contain the 

full structural elements necessary to form the epitopes.  Alternatively, these peptides 

simply might not be able to fold into conformations that mimic the structure of the whole 

protein.  Yet, another possibility is that the way in which they are coated onto the surface 

of ELISA plates hides the epitopes or sterically hinder efficient antibody binding.  Some 

differences in the amino acid sequences in the N-terminal half of the C34 peptide with 

our immunogen could also contribute.   

To further characterize antibodies, two larger protein fragments were used:  gp41-

HR1-HR2 and gp41-54Q, which are similar to gp41-HR1-54Q but lack either MPER or 

HR1, respectively (Fig. 3).  Not surprisingly, HR1-HR2, which would form a stable six-

helix bundle, was efficiently recognized, indicating that a large proportion of antibodies 

recognize non-linear, or highly conformational epitopes on the six-helix bundle.  But, 

what was interesting was that gp41-54Q, which is unable to form a six-helix bundle, was 

also well recognized.  This suggested that gp41-54Q folded into a structure that is 

different from C34 or MPER peptides individually.  Alternatively, although not 

exclusively, the two segments joined together may have allowed the protein to expose 

epitopes when coated onto the ELISA plate.   

To identify epitopes recognized by antibodies that bind gp41-54Q, we conducted 

ELISA with overlapping “10-mer” peptides (Fig. 3).  However, rather than coating plates 

with peptides directly using the traditional method, peptides were biotinylated and 

layered onto streptavidin-coated plates.  Considering that the peptides are very short, we 

suspected that direct coating of the peptides onto plates could potentially mask epitopes.  

Since antibodies could bind at either N- or C-terminal ends of the peptides, peptides were 
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biotinylated at either ends of the peptides, thereby generating two sets of biotinylated 

peptides.  We rationalized that using two different sets of the peptides would enhance our 

ability to detect antibody binding.  Furthermore, two glycine residues were inserted as a 

spacer to avoid steric clashes between antibodies and the plate.  To minimize the amount 

of work, wells were coated with both types of peptides simultaneously.  Surprisingly, 

high levels of antibodies were detected against a number of peptides (Fig. 3).  Although 

there were some animal-to-animal variations, overall, the MPER was more immunogenic 

than HR2.  The three most immunogenic peptides were 671NWFDITNWLW680, followed 

by 668SLWNWFDITN677 and 665KWASLWNWFD674.  The common amino acid residues 

on these peptides are 671NWFD674, suggesting they might play a critical role.  Consistent 

with this interpretation, the reactivity of adjacent peptides that lack NWFD 

(662ALDKWASLWN671 and 674DITNWLWYIK683) decreased precipitously.    

 

Quantification of antibodies against 671 peptide. 

 The 671 peptide (671NWFDITNWLW680) encompasses the entire 4E10 epitope 

and most of the 10E8 epitope, which extends further out to K/R683 (Cardoso et al., 2005; 

Huang et al., 2012).  Since it was the most immunogenic peptide in the region that 

encompasses HR2 and MPER, we were curious about the amount of antibodies directed 

at this peptide.  Antibody levels were compared with those directed against HR1-HR2 

six-helix bundle.  As shown in Fig. 4 (left panel), all six animals mounted strong antibody 

responses against the six-helix bundle with end-point titers reaching 2x105.  While this is 

high, it was at least 100-fold less than the titer against the whole immunogen (Fig. 2), 

indicating that there are significant levels of antibodies directed against other epitopes.  In 
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contrast, antibody levels against the 671 peptide varied from animal-to-animal, with end-

point titers ranging from about 1x104 to greater than 2x105 (Fig. 4, right panel).  

Considering that the 671 peptide is significantly smaller than HR1-HR2 six-helix bundle 

(~7-fold), this result indicates that the peptide is highly immunogenic in the context our 

gp41-HR1-54Q.    

 

Competition analyses with bnAbs 4E10 and 10E8. 

Although antibodies bound biotinylated 671 peptides, they did not bind the full 

length, unbiotinylated MPER peptide.  To determine whether antibodies that target the 

671 peptide could indeed bind the epitopes recognized by 4E10 or 10E8 in the context of 

gp41-HR1-54Q, we conducted antibody competition analyses with the two mAbs.  As 

shown in Fig. 5, both 4E10 and 10E8 could be competed away with antisera in a dose-

dependent manner.  10E8 was more easily competed, which is likely due to the fact that 

gp41-HR1-54Q has Q at position 683, instead of K or R, which is one of the residues 

important for 10E8 binding. Although the assay might not prove that antibodies bind 

exactly at the same epitope, it does confirm that antibodies do indeed bind at or near the 

4E10 and 10E8 binding site close enough to compete.   

The antibody titers against the 671 peptide and their ability to compete with 4E10 

or 10E8 did not seem to have clear correlation.  For example, rabbit #3, which showed 

the highest antibody titer, was best able to compete with 4E10 or 10E8.  However, there 

were a few notable exceptions.  For example, although rabbit #5 had lower antibody titer 

against the 671 peptide than rabbits #1, #4 and #6, antibodies from the animal were better 

able to compete with 4E10 and 10E8.  Another example is rabbit #2, which showed the 
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lowest antibody titer against the peptide.  While it competed poorly against 4E10, it 

competed better than rabbit #4 and competed equally with rabbits #1 and #6 against 

10E8.  These results reveal complexity in evaluating antibody responses and that multiple 

parameters must be considered, including quantity, affinity, epitope targets and antigens 

being used for analyses.   

 

Fine mapping analyses of antibodies targeting near 4E10/10E8 epitopes. 

To further define amino acid residues critical for antibody recognition, ELISA 

was conducted using a panel of 13-mer (671NWFDITNWLWYIK683) alanine scanning 

mutant peptides.  First, ELISA was done with the wild type peptide (Fig. 6A).  Due to 

significantly higher levels of antibodies against the peptide for rabbits #3, #5 and #6, 

higher dilution of antisera was used for the three rabbits (1:2700 compared to 1:100 for 

the other rabbits) to avoid oversaturation.  As a positive control, effects of mutations on 

4E10 binding were evaluated.  As shown in Fig. 6B, mutations at N671, W672, D674, 

and T676 severely affected 4E10 binding.  Mutations at F673, I675 and L679 also 

affected binding to a lesser extent.  It has been shown that mutations at N671 and D674, 

both of which lie on the non-neutralizing face, affect 4E10 binding because these residues 

are critical for maintaining the alpha helical conformation of C-terminal MPER 

peptides(Brunel et al., 2006).    Although W680 is important for neutralization, it is not 

critical for binding(Brunel et al., 2006; Zwick et al., 2005).  Thus, these results are 

consistent with previously published reports(Brunel et al., 2006) and validate our assay.   

ELISA results from the six rabbits varied significantly from animal-to-animal.  In 

general, three patterns were observed: (1) rabbits #1 and #2, (2) rabbits #3 and #4, and (3) 
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rabbits #5 and #6.  For rabbits #1 and #2, mutations at D674 and N671 affected binding 

the most, followed by mutations at F673, N677, W678 and L679 (Fig. 6C).  Mutations at 

I675 and T676 also affected, albeit weakly.  For rabbits #3 and #4, mutations at D674 and 

N671 also affected binding (Fig. 6D).  However, none of the mutations at other sites 

(with the exception of F673) significantly affected binding.  It should be noted that these 

assays were conducted with polyclonal sera.  Thus, one possible explanation is that a 

large diversity of antibodies was induced in these animals such that a mutation at a single 

site would not result in significantly reduced binding.  In contrast, the affects of 

mutations on antibody binding were quite severe for rabbits #5 and #6 (Fig. 6E); virtually 

all mutations, except for W672 and I682, had affected binding.  As with all other rabbits, 

the mutation at D674 affected binding most severely, possibly due to the importance of 

this residue for folding into a stable alpha helix.  Other critical residues were N671, F673, 

T676, N677 and W678.  Mutations at L679 and W680 also affected, albeit weakly.    

Y681 was also critical, but only for rabbit #5.  The fact that mutations strongly affected 

antibody binding for rabbits #5 and #6, in contrast to rabbits #3 and #4, suggested that a 

limited number of highly dominant antibodies might have been generated in rabbits #5 

and #6.            

The epitope recognized by 4E10 is 672WFDITNWLW680 (Cardoso et al., 2005).  

10E8 has a slightly larger footprint, 671NWFDITNWLWYIR683 (Huang et al., 2012).  

The results from the ELISA with alanine scanning mutant peptides clearly showed that 

residues important for recognition by the rabbit sera overlap with those critical for 4E10 

and 10E8 binding (bold/underlined).  Despite this, we did not detect any neutralizing 

activity in our rabbit sera.  To better understand possible reason(s) for the lack of 
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neutralizing activity, the amino acid residues critical for binding were plotted onto a 

peptide that was co-crystallized with 10E8 (Fig. 7).  The analyses were done based on an 

assumption that the C-terminal 13-mer peptide used for the ELISA, and the 

corresponding residues on gp41-HR1-54Q, also existed in an alpha helix.  The analyses 

revealed that the critical residues for 4E10/10E8 and rabbit antibodies were on different 

faces of the alpha helix.  For rabbits #5 and #6, they were separated by about 90° with 

overlap at F673 and T676 (Fig. 7C).  For rabbits #1 and #2, they were completely on the 

opposite side, with overlap at I675 and L679 on one side and F673 on the other.  Thus, 

the likely reason why rabbit antibodies failed to neutralize HIV-1 is because the faces of 

the alpha helix recognized by them might not be fully accessible on the trimeric envelope 

structure on the virion surface. 

  

Discussion 

Despite many failures to induce potent bnAbs against gp41 MPER during the past 

decades, it remains an important goal towards developing a protective AIDS vaccine.  

Towards this goal, we have been designing various MPER-based immunogens, one of 

them being gp41-HR1-54Q.  We had previously reported its crystal structure (Shi et al., 

2010) and its immunogenicity was examined in this study.  Although we failed to induce 

bnAbs using this construct, we believed it was important to characterize its immunogenic 

properties in detail to learn why it may have failed.  Indeed, we have made a number of 

important observations, which we believe would facilitate future vaccine development 

efforts.   
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First, strong immune responses were induced against gp41-HR1-54Q in rabbits.  

The antibody titers elicited seemed to be much stronger than previously characterized 

gp41-based immunogens, reaching nearly 1x107 end-point titers even after a single 

immunization.  This could be attributed to a potent adjuvant effect of Zn-chitosan (Qin et 

al., 2014a; Seferian and Martinez, 2000).  It could also be attributed to a stable structure 

of the six-helix bundle formed by HR1 and HR2.  Strong antibody responses against the 

six-helix bundle, especially against the cluster II region within HR2, have also been 

observed in HIV-1 infected patients (Alam et al., 2008; Frey et al., 2010).  It should be 

noted, however, that the end-point antibody titers against HR1/HR2 six-helix bundle 

were only 2x105 (Fig. 4), about 100-fold less than the titers against the whole antigen.  

This suggests that other regions/conformations of the antigen were also immunogenic.  

Indeed, significant levels of antibodies were also detected against gp41-54Q (Figure 3), a 

construct that contains just HR2 and MPER and would not be able to form the six-helix 

bundle.  Substantial antibody levels were also detected against MPER using biotinylated 

10-mer peptides, although not when the 23 amino acid MPER peptide was used.  In this 

regard, it should be pointed out that antibody detection by ELISA depends significantly 

on what protein or peptide fragments are used and how they are attached to plates (i.e. 

direct coating vs. using biotinylated peptides). 

Although we were able to induce high titers of antibodies against MPER using 

gp41-HR1-54Q, they failed to exhibit neutralizing activity.  Detailed mapping analyses 

indicated that the antibodies targeted epitopes that overlap with those of 4E10 and 10E8.  

However, the critical residues of the epitopes seemed to lie on the face of the MPER 

alpha helix perpendicular to, or opposite side of, the residues recognized by 4E10 and 
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10E8 (Figs 6 and 7).  The crystal structure revealed that the MPER region of our gp41-

HR1-54Q is highly flexible and disordered; the very C-terminal eight residues of MPER 

as well as the 6xHis tag could not be observed and the last eight residues that could be 

seen could be resolved only at the level of the backbone atoms (Shi et al., 2010).  Being 

in a “near post-fusion” state without FPPR, it appears that MPER on our immunogen is 

flexible enough to be recognized by 4E10 and 10E8 as well as the antibodies induced in 

rabbits.  However, on the native trimeric envelope structure on virus particles, flexibility 

of MPER is likely more limited being not only bound to the membrane, but also 

connected to a large cytoplasmic domain.  In such a rigid state, it is possible that the 

epitopes being recognized by the rabbit antibodies are not fully exposed on either the pre-

fusion structure or on fusion intermediates that may exist during the fusion process.  

Alternatively, these epitopes might be exposed, but the angle of approach required for 

binding might not be possible in the context of the protein situated on the viral 

membrane.   

Given that 4E10 and 10E8 epitopes are accessible on our immunogen, we are 

unsure as to why antibody responses were not induced against these epitopes.  One 

possibility is that the epitopes that induced antibodies is inherently and overwhelmingly 

more immunogenic such that faster antibody responses against these epitopes prevented 

any immune responses being mounted against the 4E10 or 10E8 epitopes (due to steric 

competition).  If this was the case, perhaps reducing immunogenicity of the epitopes by 

amino acid substitutions or by masking (e.g. by glycosylation, PEGylation or immune 

complexing) could render 4E10/10E8 epitopes more immunogenic. Another possibility is 

that the epitopes on our HR1-54Q that induced antibodies are more favorably targeted 
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than 4E10/10E8 epitopes when presented in the context of a stable six-helix bundle. In 

this case, immunogens with less completely formed (or less stable) six-helix bundle 

structures that might mimic fusion intermediates could be better immunogens. 

Alternatively, although not exclusively, immunogens that include the transmembrane 

domain (with or without the cytoplasmic tail) might be necessary to provide proper 

rigidity of, or spacing between, the three MPER on a trimeric structure that would hide 

the non-neutralizing face of the 4E10/10E8 peptide. 

Recently, there have been a couple of reports describing immunogenic properties 

of antigen constructs very similar to ours, which also contained HR1, HR2 and MPER 

domains.  In a report by Vassell et al. (Vassell et al., 2015), authors evaluated 

immunogenicity of several constructs comprised of MPER with different lengths of HR1 

and HR2 in rabbits.  Constructs were made with or without two different trimerization 

domains (GCN4 or foldon).  The immunogens were based on HIV-1HXB2 strain, in 

contrast to ours, which was based on M group consensus sequence (MCON6).  Compared 

to our study, antibody responses were significantly weaker with end-pointers reaching 

only 4-8x104.  More importantly, antibody titers directed against MPER ranged only 

between about 100 and 5,000, which are 100- to 1000-fold less than what we observed.  

Two notable differences between the two studies are (1) we used 200 µg of antigen per 

immunization while they used 50 µg, and (2) we used Zn-chitosan as an adjuvant in 

contrast to their study, which used complete/incomplete Freund’s adjuvant.  Thus, our 

study demonstrates that it is possible to overcome poor immunogenicity of MPER by 

using a suitable antigen with appropriate dosage and an adjuvant.  In this regard, one 

interesting observation from their study is that of all the immunogens they evaluated, the 
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construct that induced best antibody responses against MPER was FDA26, which lacked 

a C-terminal trimerization domain, suggesting that rigidity of the region makes it less 

immunogenic. 

In contrast, Wang et al. (Wang et al., 2011) reported the elicitation of neutralizing 

antibodies, albeit with limited breadth and potency, in rabbits upon immunization with a 

similar gp41 antigen named NCM(TAIV).  This construct, based on HXB2 strain, 

contains N36 HR1 connected to C34 HR2 via a GGGKLGGG liner followed by MPER.  

It also carries two point mutations: T569A and I675V, which have been reported to 

increase the exposure of the neutralizing epitopes in the MPER region (Blish et al., 

2008).  Interestingly, the same construct without the mutations or with a single mutation 

individually, induced much weaker antibody responses, especially against MPER region.  

The exact mechanism of enhanced immune responses rendered by these mutations, or the 

nature of neutralizing activity, currently remains unknown.  Furthermore, the absence of 

detailed epitope mapping data in the report and the lack of further follow up studies limit 

our ability to fully compare immunogenic properties of NCM(TAIV) and gp41-HR1-

54Q.   

In recent years, significant advances have been made in discovering potent bnAbs 

against HIV-1 (Bonsignori et al., 2011; Gaebler et al., 2013; Gray et al., 2011; Scheid et 

al., 2009; Walker et al., 2009; Wardemann et al., 2003) and determining high-resolution 

structures of the bnAbs (Huang et al., 2012; Julien et al., 2013b; Pejchal et al., 2011; 

Scharf et al., 2014; Zhou et al., 2010) as well as novel envelope antigens (e.g. germline 

targeting eOD-GT6 and stable trimeric SOSIP gp140; (Bartesaghi et al., 2013; Jardine et 

al., 2013; Julien et al., 2013a; Lyumkis et al., 2013)).  While structure-based, rational 
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immunogen design can facilitate vaccine development efforts, much of vaccine research 

still remains an empirical process because immunology still is a “black box” and we are 

unable to predict immunological responses to a given immunogen with any precision.  As 

such, vaccine development efforts remain a reiterative process for which understanding 

why a vaccine candidate failed to induce desired immune response is important.  Our 

study reveals detailed information on immunogenic properties of gp41-HR1-54Q.  The 

availability of its crystal structure allows us to have better understanding of the 

relationship between antigenic structures and their immunogenic properties.  We hope to 

use this information to design next generation of MPER-based immunogens.   

 

Materials and Methods: 

Rabbit immunization  

Female New Zealand white rabbits (2.5 to 3 kg) were purchased from Charles 

River or Myrtle’s Rabbitry and housed under specific pathogen free environments.  

Rabbits were cared for and used following animal protocols approved by IACUC at Case 

Western Reserve University or Iowa State University.  To evaluate immunogenic 

properties of gp41-HR1-54Q, which was expressed and purified as previously described 

(Shi et al., 2010), rabbits were immunized subcutaneously with the protein four times 

(weeks 0, 4, 9 and 15) using Zn-chitosan as an adjuvant.  Zn-chitosan was prepared and 

used as previously reported (Qin et al., 2014a).  The protein was loaded onto Zn-chitosan 

at a ratio of 200 µg to 200 mg, respectively, in phosphate-buffered saline (PBS, pH 8.0) 

by continuous agitation for three hours at room temperature.  Rabbits were immunized 

with 200 µg of gp41-HR1-54Q per each immunization. 
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Enzyme-linked immunosorbent assay (ELISA) 

To determine the end point titers, gp41-HR1-54Q was coated onto 96-well Nunc-

Immuno Plates (Nunc; # 439454) at 30 ng/well using antigen coating buffer (15 mM 

Na2CO3, 35 mM NaHCO3, 3 mM NaN3, pH 9.6) overnight at 4 oC.  Uncoated surface 

was blocked using 200 μl of PBS (pH 7.5) containing 2.5% skim milk and 25% Fetal 

Bovine Serum (FBS) for 1 hr at 37 oC.  The plates were subsequently washed 10× with 

0.1% Tween 20 in PBS.  Rabbit sera were serially diluted (three folds) in the blocking 

buffer, and 100 μl was added to each well and incubated for 2 hr at 37 oC.  The plates 

were washed 10×, and horseradish peroxidase (HRP)-conjugated secondary antibody 

(goat anti-rabbit, 1:3000 dilution; Thermo Scientific; Cat #31430) was added to each well 

and incubated (100 µl, for 1 hr at 37 oC).  Wells were washed 10× and developed by 

adding 100 µl TMB HRP-substrate (Bio-Rad) for 10 min. Reactions were stopped with 

50 µl of 2 N H2SO4.  Plates were read on a microplate reader (Versamax by Molecular 

Devices) at 450 nm.  All experiments were performed in duplicates.  

For ELISA with other proteins (gp41-HR1-HR2, gp41-54Q) and peptides (N36, 

C34), coating antigen amounts used were molar equivalents to that used for gp41-HR1-

54Q (30 ng/well).  The details of the expression and purification of gp41-HR1-HR2 and 

gp41-54Q will be described elsewhere.  As described in the results section and Fig. 3, 

constructs for these proteins were the same as gp41-HR1-54Q, except for the lack of 

MPER or HR1 domain respectively.  The gp41-HR1-HR2 protein ended at L661 with 

RSELVPR thrombin cleavage site at the C-terminus.  For ELISA with overlapping 

peptides, 10-mer peptides were biotinylated with EZ-Link Sulfo-NHS-LC Biotin as per 

the manufacturer’s instructions (Thermo Scientific, Cat #21327).  A mixture of both N- 
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and C-terminally biotinylated peptides (100 ng each) were used for coating onto 

streptavidin-coated plates (Thermo Scientific, Cat #15500).  For alanine scan analysis, 

13-mer 671NWFDITNWLWYIK683 peptides were also biotinylated similarly at the C 

terminus end using the K683 residue.  All other steps for ELISA were the same as 

described above. 

 

Competition assays 

 For competition assays, plates were coated overnight with 30 ng/well of gp41-

HR1-54Q.  Antibodies used for competition included 4E10 (Stiegler et al., 2001) and 

10E8 (Huang et al., 2012) at a final concentration of 1 μg/ml.  The rest of the assay was 

performed as previously described (Qin et al., 2014b).   

 

Neutralization assays 

TZM-bl cell-based HIV-1 pseudovirus neutralization assays were done as 

previously described (Li et al., 2005; Qin et al., 2014a; Wei et al., 2002).  Viruses tested 

were SF162 (tier 1A, clade B), MW965.26 (tier 1A, clade C), and MN.3 (tier 1A, clade 

B).  Murine leukemia virus Env-pseudotyped virus was used as a negative control.   
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Figures 

 

Fig 1: Generation of gp41-HR1-54Q.  (A) A domain structure of gp41 ectodomain is 

shown at the top consisting of FP (fusion peptide), FPPR (fusion peptide proximal 

region), HR1 (heptad repeat region 1), immunodominant C-C loop, HR2 (heptad repeat 

region 2) and MPER (membrane-proximal external region).  In comparison, gp41-HR1-

54Q consists of shortened HR1 and HR2 domains linked together by a GGGGS linker in 

place of the C-C loop.  The construct also has an N-terminal T7 expression tag and a C-

terminal 6xHis tag.  (B) SDS-PAGE of the expressed and purified protein stained with 

Coomassie blue showing total (T), supernatant (S), pellet (P) and elution (E) fractions.  

(C) A crystal structure of the gp41-HR1-54Q (pdb: 3K9A) (Shi et al., 2010) indicating 

individual domains.  (D) A crystal structure of the post fusion complex (pdb: 2X7R) 

formed by two peptides containing the FPPR-HR1 and HR2-MPER domain (Buzon et al., 

2010). 
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Fig 2: Antibody Titers.  Sera from six immunized rabbits (R1-R6) were tested for 

binding to gp41-HR1-54Q after each of the four immunizations.  Pre-immune serum was 

used as a negative control. 
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Fig 3: Mapping of Immunogenic Epitopes. Sera after fourth immunization were tested for binding against N36 peptide (HR1), C34 

peptide (HR2), MPER peptide, gp41-HR1-HR2 (comprised of HR1 and HR2 domains) and gp41-54Q (comprised of HR2 and MPER 

domains).  Purple spheres indicate ELISA A450 values for individual rabbits while the average values are plotted with red triangles.  

The amino acid sequences of N36, C34 and MPER, are compared with our antigen above the graph (conserved residues in black; 

1
8
1
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differences in red).  ELISA was also performed against biotinylated 10-mer peptides spanning both HR2 and MPER domains.  For 

each 10-mer, a mixture of N-terminus biotinylated (N-B10-mer) and C-terminus biotinylated (C-B10-mer) peptides were used.  The 

amino acid sequence each 10-mer peptide is indicated by horizontal brackets.  The first peptide (MEWEREISNY) and terminal 

peptides (DITNWLWYIK) are marked with an asterisk to indicate slight sequence differences from the original antigen.  The three 

most immunogenic peptides, along with two adjacent peptides, are indicated separately and the important binding residues are 

highlighted.  The core binding epitopes for 2F5, 4E10 and 10E8 bnAbs are also indicated.   

1
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2
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Fig 4: Antibody titers against six helix bundle and MPER peptide.  Sera after fourth 

immunization showed strong binding antibody titers against gp41-HR1-HR2.  Binding 

antibody titers were also high against the biotinylated, 10-mer 671 peptide that harbors 

the complete 4E10 epitope and the partial 10E8 epitope suggesting strong response 

against MPER.  
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Fig 5: Competition assay against bnAbs. Sera after fourth immunization could compete 

against both 4E10 and 10E8 for gp41-HR1-54Q binding.  
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Fig 6: PepScan analysis of the C-terminus end of MPER.  (A) Sera after fourth immunization were tested for binding to a 

biotinylated wild type 13-mer peptide (671NWFDITNWLWYIK683).  The sera dilutions were normalized to give comparable binding 

signal (R1, R2 and R4 were tested at 100-fold dilution while R3, R5, and R6 were tested at 2700-fold dilution).  (B) Binding of 4E10 

(1 µg/ml) to mutant peptides was evaluated as a positive control.  (C-E) The same dilutions of rabbit serum samples were tested for 

binding mutant peptides.  Results are shown as the percentage of binding to the wild type peptide shown in panel (A).  Three different 

patterns of antibody responses are shown on different columns with the average calculated at the bottom.  The labeling of the mutant 

peptides are color coded based on the extent of reduction in binding as follows:  red: <31%; orange: 31-61%; green 61-80%.  
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 Fig. 7.  Structural comparison of critical residues targeted by antibodies induced in 

rabbits with those of 10E8 and 4E10.  (A) A co-crystal structure of a peptide bound to 

10E8 is shown (pdb: 4G6F).  Amino acid residues critical for binding by 10E8 (W672 

and R683) and antibodies from rabbits #5 and #6 (N677 and W678) are shown in green 

and red, respectively.  The residues important for binding by both antibodies (F673 and 

T676) are shown in blue.  Only the most critical residues are shown.  N671 and D674 are 

not shown, as their affect on binding may be indirect.  L679, which moderately affects 

binding of 4E10, as well as rabbits #1, #2, #5, and #6, is shown in magenta.  Y681 

(cyan), which affected rabbit #5 quite significantly is also shown.  Heavy (H) and Light 

(L) chains are indicated.  (B, C) Views of the peptide bound to 10E8 from different 
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angles.  Panel C shows a view through the axis of the alpha helix at the C-terminus (from 

N671 to R683), which reveals that residues recognized by 4E10/10E8 and rabbit 

antibodies are situated on different faces of the helix.  (D) A crystal structure of a peptide 

bound to 10E8 illustrating the locations of N671 and D674, which shows that these two 

residues lie on the binding face of the helix for rabbit antibodies.  Thus they could be 

directly involved in binding antibodies in addition to being important for maintaining 

alpha helix conformation of the peptide.     
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